找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics and Computation in Music; 4th International Co Jason Yust,Jonathan Wild,John Ashley Burgoyne Conference proceedings 2013 Spring

[復(fù)制鏈接]
樓主: Exaltation
11#
發(fā)表于 2025-3-23 10:34:48 | 只看該作者
A Hypercube-Graph Model for ,-Tone Rows and Relationsompletion than those that deal more exclusively with .-tone rows and their relations as permutations of an underlying set. Our results lead to a graph-theoretical representation of the duality inherent in the pitch-class/order-number isomorphism of serial theory.
12#
發(fā)表于 2025-3-23 14:29:40 | 只看該作者
13#
發(fā)表于 2025-3-23 20:01:06 | 只看該作者
Incorporating Voice Permutations into the Theory of Neo-Riemannian Groups and Lewinian Duality.. Musical examples include Liszt, R. W. Venezia, S. 201 and Schoenberg, String Quartet Number 1, Opus 7. We also prove that the Fiore–Noll construction of the dual group in the finite case works, and clarify the relationship of permutations with the RICH transformation.
14#
發(fā)表于 2025-3-24 00:34:22 | 只看該作者
15#
發(fā)表于 2025-3-24 04:02:44 | 只看該作者
Using Formal Concept Analysisto Represent Chroma Systemsroaches are conceptually different. The same result is obtained for a given subsystem of the traditional Tone System, as we will show by analysing the case of the pentatonic system. This opens a window towards generic tone systems that can be used as starting point for the structural analysis of other finite chroma systems.
16#
發(fā)表于 2025-3-24 09:11:07 | 只看該作者
The Minkowski Geometry of Numbers Applied to the Theory of Tone Systemsthat yields selections satisfactorily reflecting the musical reality. The framework draws methods from the Minkowski geometry of numbers. It is shown that only . of very specific shapes called . lead to relevant selections. Manifold music-theoretical examples include chromatic, superchromatic, and subchromatic tone systems.
17#
發(fā)表于 2025-3-24 14:37:30 | 只看該作者
18#
發(fā)表于 2025-3-24 17:14:27 | 只看該作者
Towards a Categorical Theory of Creativity for Music, Discourse, and Cognitionivity, discourse theory, and cognition, suggests the relevance of the notion of “colimit” as a unifying construction in the three domains as well as the central role played by the Yoneda Lemma in the categorical formalization of creative processes.
19#
發(fā)表于 2025-3-24 19:18:29 | 只看該作者
20#
發(fā)表于 2025-3-25 02:24:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 14:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湘潭市| 永定县| 浦东新区| 涪陵区| 西林县| 贡觉县| 固阳县| 咸宁市| 萨迦县| 金华市| 洮南市| 颍上县| 景德镇市| 凉山| 九江县| 遂川县| 平遥县| 乌苏市| 高台县| 天柱县| 麻江县| 临沭县| 军事| 织金县| 韶关市| 栾城县| 云龙县| 商河县| 海丰县| 北川| 泗水县| 定边县| 安溪县| 宜丰县| 岳西县| 汝阳县| 宣城市| 富裕县| 黄浦区| 临江市| 鄢陵县|