找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics and Computation in Music; Third International Carlos Agon,Moreno Andreatta,John Mandereau Conference proceedings 2011 Springer

[復(fù)制鏈接]
查看: 45827|回復(fù): 57
樓主
發(fā)表于 2025-3-21 19:59:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Mathematics and Computation in Music
副標(biāo)題Third International
編輯Carlos Agon,Moreno Andreatta,John Mandereau
視頻videohttp://file.papertrans.cn/627/626804/626804.mp4
概述Up-to-date results.Fast-track conference proceedings.State-of-the-art research
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Mathematics and Computation in Music; Third International  Carlos Agon,Moreno Andreatta,John Mandereau Conference proceedings 2011 Springer
描述This book constitutes the refereed proceedings of the Third International Conference on Mathematics and Computation in Music, MCM 2011, held in Paris, France, in June 2011. The 24 revised full papers presented and the 12 short papers were carefully reviewed and selected from 62 submissions. The MCM conference is the flagship conference of the Society for Mathematics and Computation in Music. This year’s conference aimed to provide a multi-disciplinary platform dedicated to the communication and exchange of ideas amongst researchers involved in mathematics, computer science, music theory, composition, musicology, or other related disciplines. Areas covered were formalization and geometrical representation of musical structures and processes; mathematical models for music improvisation and gestures theory; set-theoretical and transformational approaches; computational analysis and cognitive musicology as well as more general discussions on history, philosophy and epistemology of music and mathematics.
出版日期Conference proceedings 2011
關(guān)鍵詞algebraic topology; computational music analysis; harmonic functions; neurodynamics; transformation theo
版次1
doihttps://doi.org/10.1007/978-3-642-21590-2
isbn_softcover978-3-642-21589-6
isbn_ebook978-3-642-21590-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag GmbH Berlin Heidelberg 2011
The information of publication is updating

書目名稱Mathematics and Computation in Music影響因子(影響力)




書目名稱Mathematics and Computation in Music影響因子(影響力)學(xué)科排名




書目名稱Mathematics and Computation in Music網(wǎng)絡(luò)公開度




書目名稱Mathematics and Computation in Music網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Mathematics and Computation in Music被引頻次




書目名稱Mathematics and Computation in Music被引頻次學(xué)科排名




書目名稱Mathematics and Computation in Music年度引用




書目名稱Mathematics and Computation in Music年度引用學(xué)科排名




書目名稱Mathematics and Computation in Music讀者反饋




書目名稱Mathematics and Computation in Music讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:20:39 | 只看該作者
Sensitive Interval Property for Scales as Words in the Free Group F2or falling circle-of-fifths presentations (or their generalizations), within a unified mathematical framework. The special property investigated herein positions the diatonic major third (and its generalizations) as of structural significance within the theory.
板凳
發(fā)表于 2025-3-22 02:19:08 | 只看該作者
地板
發(fā)表于 2025-3-22 04:49:57 | 只看該作者
Interval Cycles, Affinity Spaces, and Transpositional Networksrelations. The paper also explores the music-modeling potential of progressive and dynamic T-nets by attending to characteristic compositional deployments in the music of Witold Lutos?awski and Gy?rgy Kurtág.
5#
發(fā)表于 2025-3-22 12:10:35 | 只看該作者
6#
發(fā)表于 2025-3-22 13:55:47 | 只看該作者
7#
發(fā)表于 2025-3-22 20:17:45 | 只看該作者
Subsumption of Vertical Viewpoint Patternsement. Though computed in a way entirely different to relational network matching, this paper proves that subsumption inferences are sound and complete with respect to the underlying relational language.
8#
發(fā)表于 2025-3-22 21:18:44 | 只看該作者
Building Topological Spaces for Musical Objectse degrees of the diatonic scale and for the All-Interval Series (AIS) can be automatically built using ., a rule-based spatial programming language. Then, we suggest a new categorization for AIS based on their spatial construction.
9#
發(fā)表于 2025-3-23 03:51:22 | 只看該作者
10#
發(fā)表于 2025-3-23 06:04:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 07:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太仆寺旗| 闸北区| 石首市| 临朐县| 木兰县| 台北市| 北流市| 鄂尔多斯市| 大姚县| 潞城市| 精河县| 册亨县| 长岛县| 宁波市| 昌黎县| 建水县| 岑溪市| 鸡西市| 嵩明县| 遂宁市| 登封市| 海城市| 贞丰县| 苗栗县| 突泉县| 仁寿县| 杭锦后旗| 富裕县| 嘉善县| 民权县| 石阡县| 长春市| 南京市| 台东市| 泰来县| 崇礼县| 秀山| 大邑县| 巴彦县| 西丰县| 繁峙县|