找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics Across Cultures; The History of Non-W Helaine Selin Book 2000 Springer Science+Business Media Dordrecht 2000 Counting.Cultural

[復(fù)制鏈接]
樓主: stripper
41#
發(fā)表于 2025-3-28 18:19:48 | 只看該作者
42#
發(fā)表于 2025-3-28 18:47:58 | 只看該作者
43#
發(fā)表于 2025-3-29 02:24:13 | 只看該作者
Jean-Claude MartzloffThis is because the fact that it holds for certain classes of modules and the determination of the precise extent to which it fails for others gives an enormous amount of information on primitive ideals and in particular on the Goldie ranks of primitive quotients. This paper does not review this dev
44#
發(fā)表于 2025-3-29 05:24:37 | 只看該作者
45#
發(fā)表于 2025-3-29 11:06:19 | 只看該作者
46#
發(fā)表于 2025-3-29 12:10:55 | 只看該作者
47#
發(fā)表于 2025-3-29 17:06:06 | 只看該作者
Communicating Mathematics Across Culture and Time,Mathematics is a method for communicating ideas between people about concepts such as numbers, space and time. In any culture there is a common, structured system for such communication, whether it be in unwritten or written forms. These systems can form bridges of communication across culture and across time.
48#
發(fā)表于 2025-3-29 23:07:04 | 只看該作者
The Hebrew Mathematical Tradition,In Part One of this essay, we look in detail at the arithmetic and numerology of Abraham Ibn Ezra, and we continue with a broad description of Hebrew contributions in geometry. In Part Two, we shift the focus to algebra and its evolution from a geometric to a combinatorial subject, as seen in the works of Levi ben Gershon and Abraham Ibn Ezra.
49#
發(fā)表于 2025-3-30 00:21:40 | 只看該作者
50#
發(fā)表于 2025-3-30 07:06:11 | 只看該作者
https://doi.org/10.1007/978-94-011-4301-1Counting; Cultural Studies; Europe; History of Mathematics; mathematics
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连城县| 三亚市| 闸北区| 乌拉特中旗| 香格里拉县| 大石桥市| 奎屯市| 英吉沙县| 济宁市| 石柱| 大宁县| 尉氏县| 泸水县| 岚皋县| 昔阳县| 平利县| 青川县| 陆河县| 龙川县| 呼和浩特市| 北票市| 涪陵区| 巴楚县| 黄浦区| 萨嘎县| 万荣县| 永康市| 浏阳市| 巴中市| 东乡族自治县| 泰和县| 连州市| 孝昌县| 临邑县| 芜湖县| 丰原市| 靖州| 铜陵市| 建水县| 澄城县| 承德市|