找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical and Statistical Methods for Actuarial Sciences and Finance; eMAF2020 Marco Corazza,Manfred Gilli,Marilena Sibillo Conference p

[復(fù)制鏈接]
查看: 32065|回復(fù): 61
樓主
發(fā)表于 2025-3-21 18:01:27 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Mathematical and Statistical Methods for Actuarial Sciences and Finance
副標(biāo)題eMAF2020
編輯Marco Corazza,Manfred Gilli,Marilena Sibillo
視頻videohttp://file.papertrans.cn/627/626718/626718.mp4
概述Non-dispersive papers on quantitative studies in actuarial sciences, insurance and finance.Researches jointly developed by mathematician and statisticians.A vast community of reference interested in s
圖書封面Titlebook: Mathematical and Statistical Methods for Actuarial Sciences and Finance; eMAF2020 Marco Corazza,Manfred Gilli,Marilena Sibillo Conference p
描述.The cooperation and contamination between mathematicians, statisticians and econometricians working in actuarial sciences and finance is improving the research on these topics and producing numerous meaningful scientific results. This volume presents new ideas, in the form of four- to six-page papers, presented at the .International Conference eMAF2020 – Mathematical and Statistical Methods for Actuarial Sciences and Finance.. Due to the now sadly famous COVID-19 pandemic, the conference was held remotely through the Zoom platform offered by the Department of Economics of the Ca’ Foscari University of Venice on September 18, 22 and 25, 2020...eMAF2020. is the ninth edition of an international biennial series of scientific meetings, started in 2004 at the initiative of the Department of Economics and Statistics of the University of Salerno. The effectiveness of this idea has been proven by wide participation in all editions, which have been held in Salerno (2004, 2006, 2010 and 2014), Venice (2008, 2012 and 2020), Paris (2016) and Madrid (2018)...This book covers a wide variety of subjects: artificial intelligence and machine learning in finance and insurance, behavioral finance, c
出版日期Conference proceedings 2021
關(guān)鍵詞Actuarial Sciences; Quantitative Insurance; Quantitative Finance; Mathematics; Statistics
版次1
doihttps://doi.org/10.1007/978-3-030-78965-7
isbn_softcover978-3-030-78967-1
isbn_ebook978-3-030-78965-7
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Mathematical and Statistical Methods for Actuarial Sciences and Finance影響因子(影響力)




書目名稱Mathematical and Statistical Methods for Actuarial Sciences and Finance影響因子(影響力)學(xué)科排名




書目名稱Mathematical and Statistical Methods for Actuarial Sciences and Finance網(wǎng)絡(luò)公開度




書目名稱Mathematical and Statistical Methods for Actuarial Sciences and Finance網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Mathematical and Statistical Methods for Actuarial Sciences and Finance被引頻次




書目名稱Mathematical and Statistical Methods for Actuarial Sciences and Finance被引頻次學(xué)科排名




書目名稱Mathematical and Statistical Methods for Actuarial Sciences and Finance年度引用




書目名稱Mathematical and Statistical Methods for Actuarial Sciences and Finance年度引用學(xué)科排名




書目名稱Mathematical and Statistical Methods for Actuarial Sciences and Finance讀者反饋




書目名稱Mathematical and Statistical Methods for Actuarial Sciences and Finance讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:07:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:04:46 | 只看該作者
An Empirical Investigation of Heavy Tails in Emerging Markets and Robust Estimation of the Pareto Ttional Threshold Accepting-VaR based algorithm (TAVaR) for optimally estimating the Pareto tail index. A Monte Carlo bias estimation analysis is also carried out by comparing our proposed methodology with the Hill estimator and a variant of it.
地板
發(fā)表于 2025-3-22 06:53:55 | 只看該作者
5#
發(fā)表于 2025-3-22 11:01:23 | 只看該作者
6#
發(fā)表于 2025-3-22 14:52:42 | 只看該作者
7#
發(fā)表于 2025-3-22 17:48:54 | 只看該作者
8#
發(fā)表于 2025-3-23 01:08:37 | 只看該作者
,Conditional Quantile Estimation for?Linear ARCH Models with MIDAS Components,MIDAS (Q–ARCH–MIDAS), allows to benefit from the information coming from variables observed at different frequencies with respect to that of the variable of interest. Moreover, the QR context brings additional advantages, such as the robustness to the presence of outliers and the lack of distributional assumptions.
9#
發(fā)表于 2025-3-23 04:10:32 | 只看該作者
10#
發(fā)表于 2025-3-23 08:17:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
正阳县| 汉寿县| 雅安市| 唐海县| 澄江县| 阿克苏市| 湛江市| 武山县| 德化县| 定西市| 济南市| 广昌县| 赤城县| 苏尼特右旗| 靖边县| 平顺县| 衡南县| 云霄县| 花莲市| 临汾市| 互助| 巩留县| 廉江市| 阿荣旗| 兴国县| 青海省| 鄂托克旗| 灵川县| 曲阳县| 开江县| 尉犁县| 昌乐县| 蕲春县| 洪洞县| 法库县| 南城县| 巴林左旗| 广灵县| 延吉市| 巨野县| 本溪市|