找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical and Numerical Foundations of Turbulence Models and Applications; Tomás Chacón Rebollo,Roger Lewandowski Book 2014 Springer Sc

[復制鏈接]
樓主: 呻吟
41#
發(fā)表于 2025-3-28 15:52:51 | 只看該作者
42#
發(fā)表于 2025-3-28 21:15:14 | 只看該作者
43#
發(fā)表于 2025-3-29 00:07:12 | 只看該作者
Finite Element Approximation of Evolution Smagorinsky Model,ady case, we shall consider this model as intrinsically discrete. We consider a semi-implicit discretization in time by the Euler method as a model time discretization. We analyze stability, error, and well-posedness for all flow regimes and study the asymptotic error balance.
44#
發(fā)表于 2025-3-29 03:08:48 | 只看該作者
A Projection-Based Variational Multiscale Model,ge of small resolved scales. We prove stability and perform a convergence analysis to the Navier–Stokes equations, including wall laws, in steady and unsteady regimes. We analyze the asymptotic convergence balance. We finally prove that this method attempts optimal accuracy for smooth flows.
45#
發(fā)表于 2025-3-29 10:13:07 | 只看該作者
Numerical Approximation of NS-TKE Model,duction term so as a smooth friction boundary condition for the TKE. In the steady case we prove stability and strong convergence to a weak solution. In the evolution case we consider a semi-implicit Euler scheme that decouples velocity and TKE. We prove the stability of the scheme and weak converge
46#
發(fā)表于 2025-3-29 11:36:17 | 只看該作者
47#
發(fā)表于 2025-3-29 18:52:19 | 只看該作者
48#
發(fā)表于 2025-3-29 21:23:29 | 只看該作者
Numerical Approximation of NS-TKE Model,In the evolution case we consider a semi-implicit Euler scheme that decouples velocity and TKE. We prove the stability of the scheme and weak convergence to a limit problem in which the TKE only verifies a variational inequality.
49#
發(fā)表于 2025-3-30 02:15:38 | 只看該作者
50#
發(fā)表于 2025-3-30 04:20:21 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 08:55
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
青田县| 芷江| 昭苏县| 昆明市| 萨嘎县| 绥化市| 晋江市| 紫金县| 科技| 岳阳市| 墨竹工卡县| 高安市| 丹江口市| 渝中区| 富平县| 扶风县| 砚山县| 内江市| 镇康县| 丰县| 抚顺市| 麻栗坡县| 甘洛县| 交城县| 高台县| 滕州市| 武威市| 夏邑县| 临城县| 南澳县| 乌鲁木齐县| 南郑县| 万荣县| 登封市| 湟中县| 玉门市| 西乡县| 红原县| 保康县| 垦利县| 松原市|