找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical and Computational Modeling of Tonality; Theory and Applicati Elaine Chew Book 2014 Springer Science+Business Media New York 20

[復(fù)制鏈接]
樓主: 決絕
21#
發(fā)表于 2025-3-25 04:37:09 | 只看該作者
MuSA.RTf tonal induction and tracking algorithms. In this chapter we describe the mapping strategies for transforming a MIDI stream into tonal structures in 3D space, and our solution for overcoming the challenge of real-time concurrent processing of data streams; we will also give examples and present cas
22#
發(fā)表于 2025-3-25 07:55:57 | 只看該作者
Sensitivity Analysisby period shows that pieces from the romantic period may be the most challenging for key-finding. We next propose three extensions to the basic key-finding system—the modified Spiral Array approach, fundamental frequency identification, and post-weight balancing—to improve the performance at differe
23#
發(fā)表于 2025-3-25 13:29:30 | 只看該作者
Book 2014nd is written for a broad audience, ranging from the layperson interested in music, mathematics, and computing to the music scientist-engineer interested in computational approaches to music representation and analysis, from the music-mathematical and computational sciences student interested in lea
24#
發(fā)表于 2025-3-25 18:49:15 | 只看該作者
25#
發(fā)表于 2025-3-25 20:42:18 | 只看該作者
26#
發(fā)表于 2025-3-26 00:34:57 | 只看該作者
27#
發(fā)表于 2025-3-26 07:05:45 | 只看該作者
28#
發(fā)表于 2025-3-26 11:58:37 | 只看該作者
Argus Segmentation Methody point in the interior of the Spiral Array, segmentation boundaries map to peaks in the distances between the CEs of adjacent segments of music. The best-case computed boundaries are, on average, within 0.94?% (for Regard IV) and 0.11?% (for Regard XVI) of their targets.
29#
發(fā)表于 2025-3-26 13:26:32 | 只看該作者
An Abbreviated Surveypiration from interior point methods in linear optimization. The second part of the chapter describes the von Neumann Center of Gravity algorithm and Dantzig’s bracketing technique to speed convergence, and then draws analogies between the algorithm and the CEG method.
30#
發(fā)表于 2025-3-26 19:09:08 | 只看該作者
The CEG Algorithm (Part I) a graph showing the evolution of the closest keys accompany the tabular results. A MATLAB version of the CEG code appears in Appendix B. An evaluation of the CEG algorithm follows in Chap.?.; the CEG method is applied to polyphonic music in MIDI (Musical Instrument Digital Interface) format in Chap.?., and adapted to music audio in Chap.?..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
远安县| 峨边| 淮安市| 辽阳县| 富川| 双鸭山市| 保德县| 美姑县| 壶关县| 永康市| 宿松县| 合肥市| 新巴尔虎右旗| 浪卡子县| 英山县| 尤溪县| 化隆| 汝南县| 繁昌县| 西畴县| 深圳市| 木兰县| 宾阳县| 西乌珠穆沁旗| 漾濞| 弋阳县| 白河县| 滦平县| 桂阳县| 子长县| 阿荣旗| 马山县| 台北市| 呼伦贝尔市| 平昌县| 西畴县| 锦屏县| 城口县| 建水县| 瓮安县| 双峰县|