找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical and Computational Methods for Modelling, Approximation and Simulation; Domingo Barrera,Sara Remogna,Driss Sbibih Conference p

[復(fù)制鏈接]
查看: 12683|回復(fù): 52
樓主
發(fā)表于 2025-3-21 17:40:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Mathematical and Computational Methods for Modelling, Approximation and Simulation
編輯Domingo Barrera,Sara Remogna,Driss Sbibih
視頻videohttp://file.papertrans.cn/627/626681/626681.mp4
概述Recent advances in reducing Runge and Gibbs phenomena.Difficulties in studying models depending on the highly non-linear behaviour of a system of PDEs.Quasi-interpolation and numerical solution of int
叢書名稱SEMA SIMAI Springer Series
圖書封面Titlebook: Mathematical and Computational Methods for Modelling, Approximation and Simulation;  Domingo Barrera,Sara Remogna,Driss Sbibih Conference p
描述This book contains plenary lectures given at the International Conference on Mathematical and Computational Modeling, Approximation and Simulation, dealing with three very different problems: reduction of Runge and Gibbs phenomena, difficulties arising when studying models that depend on the highly nonlinear behaviour of a system of PDEs, and data fitting with truncated hierarchical B-splines for the adaptive reconstruction of industrial models. The book includes nine contributions, mostly related to quasi-interpolation. This is a topic that continues to register a high level of interest, both for those working in the field of approximation theory and for those interested in its use in a practical context. Two chapters address the construction of quasi-interpolants, and three others focus on the use of quasi-interpolation in solving integral equations. The remaining four concern a problem related to the heat diffusion equation, new results on the notion of convexity in probabilistic metric spaces (which are applied to the study of the existence and uniqueness of the solution of a Volterra equation), the use of smoothing splines to address an economic problem and, finally, the analy
出版日期Conference proceedings 2022
關(guān)鍵詞Splines; Integral equations; Interpolation; Quasi-interpolation; Partial differential equations
版次1
doihttps://doi.org/10.1007/978-3-030-94339-4
isbn_softcover978-3-030-94341-7
isbn_ebook978-3-030-94339-4Series ISSN 2199-3041 Series E-ISSN 2199-305X
issn_series 2199-3041
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Mathematical and Computational Methods for Modelling, Approximation and Simulation影響因子(影響力)




書目名稱Mathematical and Computational Methods for Modelling, Approximation and Simulation影響因子(影響力)學(xué)科排名




書目名稱Mathematical and Computational Methods for Modelling, Approximation and Simulation網(wǎng)絡(luò)公開度




書目名稱Mathematical and Computational Methods for Modelling, Approximation and Simulation網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Mathematical and Computational Methods for Modelling, Approximation and Simulation被引頻次




書目名稱Mathematical and Computational Methods for Modelling, Approximation and Simulation被引頻次學(xué)科排名




書目名稱Mathematical and Computational Methods for Modelling, Approximation and Simulation年度引用




書目名稱Mathematical and Computational Methods for Modelling, Approximation and Simulation年度引用學(xué)科排名




書目名稱Mathematical and Computational Methods for Modelling, Approximation and Simulation讀者反饋




書目名稱Mathematical and Computational Methods for Modelling, Approximation and Simulation讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:25:34 | 只看該作者
Domingo Barrera,Sara Remogna,Driss SbibihRecent advances in reducing Runge and Gibbs phenomena.Difficulties in studying models depending on the highly non-linear behaviour of a system of PDEs.Quasi-interpolation and numerical solution of int
板凳
發(fā)表于 2025-3-22 01:32:03 | 只看該作者
地板
發(fā)表于 2025-3-22 08:14:01 | 只看該作者
Richardson Extrapolation of Nystr?m Method Associated with a Sextic Spline Quasi-Interpolante second kind. For a sufficiently smooth kernel the method is shown to have convergence of order 8 and the . extrapolation is used to further improve this order to 9. Numerical examples are given to confirm the theoretical estimates.
5#
發(fā)表于 2025-3-22 11:12:56 | 只看該作者
6#
發(fā)表于 2025-3-22 13:50:05 | 只看該作者
Numerical Methods Based on Spline Quasi-Interpolating Operators for Hammerstein Integral Equationsolve Hammerstein integral equation. We present an error analysis of the approximate solutions and we show that the iterated solution of collocation type exhibits a superconvergence as in the case of the Galerkin method. Finally, we provide numerical tests, that confirm the theoretical results.
7#
發(fā)表于 2025-3-22 18:47:16 | 只看該作者
Superconvergent Methods Based on Cubic Splines for Solving Linear Integral EquationsIn this paper we propose two collocation methods, based on superconvergent cubic spline interpolant and quasi-interpolant, for approximating the solution of the second kind Fredholm integral equations. Convergence analysis is established. Some numerical examples are given to show the validity of the presented methods.
8#
發(fā)表于 2025-3-23 00:56:29 | 只看該作者
9#
發(fā)表于 2025-3-23 04:39:52 | 只看該作者
10#
發(fā)表于 2025-3-23 05:38:53 | 只看該作者
Mathematical and Computational Methods for Modelling, Approximation and Simulation978-3-030-94339-4Series ISSN 2199-3041 Series E-ISSN 2199-305X
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 02:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汝州市| 化德县| 南陵县| 砚山县| 漳平市| 无棣县| 塘沽区| 南召县| 宝坻区| 磐石市| 阳信县| 南郑县| 宁乡县| 南部县| 台北市| 榆树市| 甘德县| 剑川县| 桦甸市| 富裕县| 明溪县| 息烽县| 贵州省| 山东| 商水县| 乐东| 万载县| 岳西县| 望城县| 林州市| 响水县| 栖霞市| 驻马店市| 大安市| 含山县| 平和县| 深水埗区| 漯河市| 榆中县| 五家渠市| 手游|