找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical and Computational Intelligence to Socio-scientific Analytics and Applications; Pankaj Srivastava,M. Lellis Thivagar,Chai Chin

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 04:01:56 | 只看該作者
Mathematical and Computational Intelligence to Socio-scientific Analytics and Applications
22#
發(fā)表于 2025-3-25 08:58:49 | 只看該作者
23#
發(fā)表于 2025-3-25 14:07:04 | 只看該作者
24#
發(fā)表于 2025-3-25 19:50:34 | 只看該作者
,AI-Guided Paradigmatic Competence to Embrace Future Trends and Research: A Science–Spirituality Conality can provide a tranquil state of mind, corresponding calmness, and insights not biased by our prejudices. Science is evident in progress toward an approximation of truths, which also aims to improve the power of theoretical and conceptual explanation of the reality of a phenomenon. Thus, a coup
25#
發(fā)表于 2025-3-25 22:12:12 | 只看該作者
Itinerary Planning Destination Ranking Tourism Analytics System, and everyone got stuck at home for months of self-quarantined. Because of travel restrictions, all sectors started to suffer, and the tourism industry was one of the hardest hit. However, today, as the globe is opening, the tourism industry is slowly getting back on its feet. As a result, we have p
26#
發(fā)表于 2025-3-26 01:29:51 | 只看該作者
27#
發(fā)表于 2025-3-26 05:53:56 | 只看該作者
,A Numerical Study on Atangana–Baleanu and Caputo–Fabrizio Fractional Derivatives for MHD Flow Past tangana–Baleanu (AB) and Caputo–Fabrizio (CF) for MHD flow past an impulsively started vertical plate with ramped temperature and concentration. Using appropriate similarity transformations, the leading partial differential equations together with the boundary conditions are reduced to dimensionless
28#
發(fā)表于 2025-3-26 12:19:45 | 只看該作者
,A New Computing Techniques on?Digital Nano Topology,logy on a non-empty set with widely known closure and interior operators which is called as the digital nano topology. Also define the digital nano topology on a digital plane .with khalimsky plane topology, named as digital nano khalimsky plane (In short, Digital .) topology. Using these novel perc
29#
發(fā)表于 2025-3-26 13:00:04 | 只看該作者
Bicomplex Mittag-Leffler Function and Applications in Integral Transform and Fractional Calculus,ne to develop the applications of the bicomplex Mittag-Leffler function in the area of fractional calculus. The purpose of this paper is to evaluate the bicomplex integral transforms of the bicomplex one parameter Mittag-Leffler function. Application of bicomplex Laplace transform has been demonstra
30#
發(fā)表于 2025-3-26 18:40:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 07:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
茌平县| 兴海县| 临潭县| 黔西县| 成武县| 肃南| 阳原县| 云龙县| 延吉市| 曲水县| 遵化市| 泰州市| 呼和浩特市| 西昌市| 仁布县| 元江| 镇安县| 聂荣县| 乐平市| 乌拉特前旗| 成都市| 莱州市| 石河子市| 万宁市| 婺源县| 庆云县| 张家川| 根河市| 邵阳市| 平阳县| 惠东县| 隆化县| 城步| 洞头县| 安庆市| 饶平县| 慈利县| 凤庆县| 马龙县| 台南县| 青龙|