找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Theory of Elasticity of Quasicrystals and Its Applications; Tian-You‘Fan Book 2016Latest edition Science Press and Springer

[復制鏈接]
樓主: 贖罪
21#
發(fā)表于 2025-3-25 05:52:09 | 只看該作者
22#
發(fā)表于 2025-3-25 07:58:45 | 只看該作者
23#
發(fā)表于 2025-3-25 12:36:10 | 只看該作者
,Application II—Solutions of Notch and Crack Problems of One- and Two-Dimensional Quasicrystals,Quasicrystals are potential material to be developed for structural use, and their strength and toughness attract the attention of researchers. Experimental observations [Hu et al. in Adv Phy 17:345–376, 1997 ., Meng et al. in Acta Metal Sinica 30:61–64, 1994 .] have shown that quasicrystals are brittle under low and middle temperature.
24#
發(fā)表于 2025-3-25 16:12:14 | 只看該作者
25#
發(fā)表于 2025-3-25 23:55:04 | 只看該作者
Phonon-Phason Dynamics and Defect Dynamics of Solid Quasicrystals,Elastodynamics or phonon-phason dynamics of quasicrystals is a topic with different points of view. The focus of contradictions between different scholar circles lies in the role of phason variables in the dynamic process.
26#
發(fā)表于 2025-3-26 00:53:41 | 只看該作者
27#
發(fā)表于 2025-3-26 04:18:28 | 只看該作者
Variational Principle of Elasticity of Quasicrystals, Numerical Analysis and Applications,From Chaps.?.–., we developed analytic theories and methods.
28#
發(fā)表于 2025-3-26 11:04:19 | 只看該作者
Some Mathematical Principles on Solutions of Elasticity of Quasicrystals,Starting from Chap.?., we studied several mathematical models of the elasticity of quasicrystals and gave different kinds of solutions.
29#
發(fā)表于 2025-3-26 15:25:41 | 只看該作者
30#
發(fā)表于 2025-3-26 17:07:16 | 只看該作者
Fracture Theory of Solid Quasicrystals,Solid quasicrystals are brittle, and the study on fracture behaviour of the material is significant. In the previous chapters, many of crack problems are investigated, and the exact analytic, approximate and numerical solutions are constructed; this provides a basis for discussing the fracture theory.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 14:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
喀什市| 湘潭县| 铁岭县| 阳信县| 五常市| 新源县| 尚义县| 高雄县| 扎赉特旗| 恩平市| 松江区| 社会| 博罗县| 苏尼特左旗| 商洛市| 西充县| 高邮市| 平安县| 黄石市| 化德县| 长顺县| 余姚市| 黄平县| 建平县| 鄱阳县| 高台县| 深圳市| 临夏县| 阿拉善右旗| 湟源县| 阳原县| 英山县| 广南县| 伊宁市| 秦皇岛市| 谷城县| 和静县| 城口县| 吉隆县| 海原县| 天津市|