找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Theory and Computational Practice; 5th Conference on Co Klaus Ambos-Spies,Benedikt L?we,Wolfgang Merkle Conference proceedings

[復(fù)制鏈接]
樓主: CLOG
61#
發(fā)表于 2025-4-1 03:42:23 | 只看該作者
Conference proceedings 20099...The 34 papers presented together with 17 invited lectures were carefully reviewed and selected from 100 submissions. The aims of the conference is to advance our theoretical understanding of what can and cannot be computed, by any means of computation. It is the largest international meeting foc
62#
發(fā)表于 2025-4-1 09:34:01 | 只看該作者
63#
發(fā)表于 2025-4-1 13:20:57 | 只看該作者
64#
發(fā)表于 2025-4-1 15:43:40 | 只看該作者
Stochastic Programs and Hybrid Automata for (Biological) Modeling,We present a technique to associate to stochastic programs written in stochastic Concurrent Constraint Programming a semantics in terms of a lattice of hybrid automata. The aim of this construction is to provide a framework to approximate the stochastic behavior by a mixed discrete/continuous dynamics with a variable degree of discreteness.
65#
發(fā)表于 2025-4-1 20:10:25 | 只看該作者
66#
發(fā)表于 2025-4-1 23:35:15 | 只看該作者
67#
發(fā)表于 2025-4-2 04:04:53 | 只看該作者
68#
發(fā)表于 2025-4-2 10:03:57 | 只看該作者
69#
發(fā)表于 2025-4-2 12:40:38 | 只看該作者
70#
發(fā)表于 2025-4-2 19:03:40 | 只看該作者
Complexity of Existential Positive First-Order Logic, holds in?Γ is in LOGSPACE or complete for the class CSP(Γ). under deterministic polynomial-time many-one reductions. Here, CSP(Γ). is the class of problems that can be reduced to the . of?Γ under . polynomial-time many-one reductions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 22:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昆明市| 丰城市| 潮州市| 民丰县| 鄂温| 镇远县| 清新县| 手游| 信宜市| 昌都县| 潞城市| 青冈县| 松潘县| 白水县| 安福县| 疏附县| 同仁县| 雷山县| 游戏| 乐平市| 福清市| 永宁县| 泸溪县| 错那县| 鄂州市| 永年县| 寻乌县| 三亚市| 达孜县| 喜德县| 南华县| 柘城县| 奉贤区| 静海县| 新田县| 鄂尔多斯市| 前郭尔| 五常市| 禹城市| 溆浦县| 泌阳县|