找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Theory and Computational Practice; 5th Conference on Co Klaus Ambos-Spies,Benedikt L?we,Wolfgang Merkle Conference proceedings

[復(fù)制鏈接]
樓主: CLOG
61#
發(fā)表于 2025-4-1 03:42:23 | 只看該作者
Conference proceedings 20099...The 34 papers presented together with 17 invited lectures were carefully reviewed and selected from 100 submissions. The aims of the conference is to advance our theoretical understanding of what can and cannot be computed, by any means of computation. It is the largest international meeting foc
62#
發(fā)表于 2025-4-1 09:34:01 | 只看該作者
63#
發(fā)表于 2025-4-1 13:20:57 | 只看該作者
64#
發(fā)表于 2025-4-1 15:43:40 | 只看該作者
Stochastic Programs and Hybrid Automata for (Biological) Modeling,We present a technique to associate to stochastic programs written in stochastic Concurrent Constraint Programming a semantics in terms of a lattice of hybrid automata. The aim of this construction is to provide a framework to approximate the stochastic behavior by a mixed discrete/continuous dynamics with a variable degree of discreteness.
65#
發(fā)表于 2025-4-1 20:10:25 | 只看該作者
66#
發(fā)表于 2025-4-1 23:35:15 | 只看該作者
67#
發(fā)表于 2025-4-2 04:04:53 | 只看該作者
68#
發(fā)表于 2025-4-2 10:03:57 | 只看該作者
69#
發(fā)表于 2025-4-2 12:40:38 | 只看該作者
70#
發(fā)表于 2025-4-2 19:03:40 | 只看該作者
Complexity of Existential Positive First-Order Logic, holds in?Γ is in LOGSPACE or complete for the class CSP(Γ). under deterministic polynomial-time many-one reductions. Here, CSP(Γ). is the class of problems that can be reduced to the . of?Γ under . polynomial-time many-one reductions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 22:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
调兵山市| 大安市| 许昌市| 南宁市| 张掖市| 和龙市| 三台县| 色达县| 来凤县| 永平县| 眉山市| 龙海市| 赤城县| 陕西省| 华容县| 镶黄旗| 宜兰市| 汝州市| 房山区| 千阳县| 梅河口市| 大竹县| 开封市| 常熟市| 田东县| 宁城县| 沈丘县| 沁水县| 喜德县| 启东市| 禹州市| 清丰县| 平湖市| 安岳县| 资兴市| 西和县| 灵台县| 天津市| 广平县| 太和县| 新沂市|