找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Theory and Computational Practice; 5th Conference on Co Klaus Ambos-Spies,Benedikt L?we,Wolfgang Merkle Conference proceedings

[復(fù)制鏈接]
樓主: CLOG
61#
發(fā)表于 2025-4-1 03:42:23 | 只看該作者
Conference proceedings 20099...The 34 papers presented together with 17 invited lectures were carefully reviewed and selected from 100 submissions. The aims of the conference is to advance our theoretical understanding of what can and cannot be computed, by any means of computation. It is the largest international meeting foc
62#
發(fā)表于 2025-4-1 09:34:01 | 只看該作者
63#
發(fā)表于 2025-4-1 13:20:57 | 只看該作者
64#
發(fā)表于 2025-4-1 15:43:40 | 只看該作者
Stochastic Programs and Hybrid Automata for (Biological) Modeling,We present a technique to associate to stochastic programs written in stochastic Concurrent Constraint Programming a semantics in terms of a lattice of hybrid automata. The aim of this construction is to provide a framework to approximate the stochastic behavior by a mixed discrete/continuous dynamics with a variable degree of discreteness.
65#
發(fā)表于 2025-4-1 20:10:25 | 只看該作者
66#
發(fā)表于 2025-4-1 23:35:15 | 只看該作者
67#
發(fā)表于 2025-4-2 04:04:53 | 只看該作者
68#
發(fā)表于 2025-4-2 10:03:57 | 只看該作者
69#
發(fā)表于 2025-4-2 12:40:38 | 只看該作者
70#
發(fā)表于 2025-4-2 19:03:40 | 只看該作者
Complexity of Existential Positive First-Order Logic, holds in?Γ is in LOGSPACE or complete for the class CSP(Γ). under deterministic polynomial-time many-one reductions. Here, CSP(Γ). is the class of problems that can be reduced to the . of?Γ under . polynomial-time many-one reductions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 01:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浦县| 新丰县| 壤塘县| 上饶县| 萝北县| 娱乐| 阳泉市| 西盟| 淮北市| 宁国市| 南皮县| 和平区| 石棉县| 屏南县| 天津市| 成武县| 井研县| 静安区| 神池县| 新田县| 萍乡市| 定安县| 沂源县| 大石桥市| 闽侯县| 扶风县| 中阳县| 万荣县| 新化县| 虎林市| 太和县| 米林县| 房产| 克拉玛依市| 甘泉县| 玛纳斯县| 嘉善县| 含山县| 商城县| 石家庄市| 孝义市|