找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Structures of Ergodicity and Chaos in Population Dynamics; Pawe? J. Mitkowski Book 2021 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
查看: 6230|回復(fù): 38
樓主
發(fā)表于 2025-3-21 17:10:09 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Mathematical Structures of Ergodicity and Chaos in Population Dynamics
編輯Pawe? J. Mitkowski
視頻videohttp://file.papertrans.cn/627/626607/626607.mp4
概述Discusses Mathematical Structures of Ergodicity and Chaos in Population Dynamics.Analyzes the hypothesis of the existence of non-trivial ergodic properties of the model of erythropoietic response dyna
叢書名稱Studies in Systems, Decision and Control
圖書封面Titlebook: Mathematical Structures of Ergodicity and Chaos in Population Dynamics;  Pawe? J. Mitkowski Book 2021 The Editor(s) (if applicable) and The
描述This book concerns issues related to biomathematics, medicine, or cybernetics as practiced by engineers. Considered population dynamics models are still in the interest of researchers, and even this interest is increasing, especially now in the time of?SARS-CoV-2?coronavirus pandemic, when models are intensively studied in order to help predict its behaviour within human population. The structures of population dynamics models and practical methods of finding their solutions are discussed. Finally, the hypothesis of the existence of non-trivial ergodic properties of the model of erythropoietic response dynamics formulated by A. Lasota in the form of delay differential equation with unimodal feedback is analysed. The research can be compared with actual medical data, as well as shows that the structures of population models can reflect the dynamic structures of reality.?
出版日期Book 2021
關(guān)鍵詞Ergodicity; Chaos; Population Dynamics; Nonlinear Dynamics; Lasota-Wazewska Equation
版次1
doihttps://doi.org/10.1007/978-3-030-57678-3
isbn_softcover978-3-030-57680-6
isbn_ebook978-3-030-57678-3Series ISSN 2198-4182 Series E-ISSN 2198-4190
issn_series 2198-4182
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Mathematical Structures of Ergodicity and Chaos in Population Dynamics影響因子(影響力)




書目名稱Mathematical Structures of Ergodicity and Chaos in Population Dynamics影響因子(影響力)學(xué)科排名




書目名稱Mathematical Structures of Ergodicity and Chaos in Population Dynamics網(wǎng)絡(luò)公開度




書目名稱Mathematical Structures of Ergodicity and Chaos in Population Dynamics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Mathematical Structures of Ergodicity and Chaos in Population Dynamics被引頻次




書目名稱Mathematical Structures of Ergodicity and Chaos in Population Dynamics被引頻次學(xué)科排名




書目名稱Mathematical Structures of Ergodicity and Chaos in Population Dynamics年度引用




書目名稱Mathematical Structures of Ergodicity and Chaos in Population Dynamics年度引用學(xué)科排名




書目名稱Mathematical Structures of Ergodicity and Chaos in Population Dynamics讀者反饋




書目名稱Mathematical Structures of Ergodicity and Chaos in Population Dynamics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:20:25 | 只看該作者
Chaos and Ergodic Theory,4; Devaney 1987; Bronsztejn et?al. 2004). In this book, we will be interested particularly in the approach where chaos is studied using ergodic theory tools (Lasota 1979; Rudnicki 1985a, 2009, 2004; Dawidowicz 1992a). The moment when L. Boltzmann formulated the ergodic hypothesis can probably be con
板凳
發(fā)表于 2025-3-22 03:27:05 | 只看該作者
地板
發(fā)表于 2025-3-22 07:17:30 | 只看該作者
Lasota Equation with Unimodal Regulation,haracter (see e.g., Wa?ewska-Czy?ewska 1983; Mackey and Milton 1990). In some cases, it may demonstrate non-monotonic character, or in other words it may be described by a function with one smooth maximum for arguments greater than zero. Such functions are called unimodal (see e.g., R?st and Wu 2007
5#
發(fā)表于 2025-3-22 11:04:58 | 只看該作者
trategic progress on certain assumptions for the future. In order to prepare for various developments of the future, it is reasonable to consider different possible scenarios while building a future vision. Thus, this chapter focuses on the methodological approach for the generation of future scenar
6#
發(fā)表于 2025-3-22 16:15:11 | 只看該作者
7#
發(fā)表于 2025-3-22 21:07:51 | 只看該作者
8#
發(fā)表于 2025-3-22 23:26:31 | 只看該作者
9#
發(fā)表于 2025-3-23 04:45:46 | 只看該作者
verged architecture supporting multimedia services. Extending the IMS towards provisioning support for location based services (LBS) will enable enhanced services and offer new revenues to the system. However, conveying location information in the IMS and connecting the IMS with a real positioning s
10#
發(fā)表于 2025-3-23 07:56:20 | 只看該作者
https://doi.org/10.1007/978-3-030-57678-3Ergodicity; Chaos; Population Dynamics; Nonlinear Dynamics; Lasota-Wazewska Equation
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
日土县| 张北县| 满洲里市| 呼伦贝尔市| 舞钢市| 呈贡县| 秦安县| 淅川县| 阳新县| 正宁县| 廊坊市| 南京市| 绩溪县| 建阳市| 禹城市| 韶关市| 金门县| 池州市| 汾阳市| 黄骅市| 河北区| 富川| 延安市| 百色市| 湖口县| 伊吾县| 从江县| 株洲市| 岫岩| 惠东县| 中宁县| 静乐县| 措勤县| 平和县| 长顺县| 富川| 开原市| 恩平市| 云安县| 中方县| 宣威市|