找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Software – ICMS 2020; 7th International Co Anna Maria Bigatti,Jacques Carette,Timo de Wolff Conference proceedings 2020 Spring

[復(fù)制鏈接]
樓主: mobility
11#
發(fā)表于 2025-3-23 12:35:50 | 只看該作者
12#
發(fā)表于 2025-3-23 17:08:08 | 只看該作者
13#
發(fā)表于 2025-3-23 20:06:44 | 只看該作者
14#
發(fā)表于 2025-3-23 23:12:13 | 只看該作者
15#
發(fā)表于 2025-3-24 04:17:20 | 只看該作者
Curtains in CAD: Why Are They a Problem and How Do We Fix Them?iting an equational constraint .). That method, however, fails if . is nullified (in McCallum’s terminology): we call the set where this happens a curtain. Here we provide a further modification which, at the cost of a trade off in terms of complexity, is valid for any hypersurface, including one containing curtains.
16#
發(fā)表于 2025-3-24 08:55:53 | 只看該作者
17#
發(fā)表于 2025-3-24 10:47:26 | 只看該作者
Evaluating and Differentiating a Polynomial Using a Pseudo-witness Setderivatives along the line at any point on the given line. Several examples are used to demonstrate this new algorithm including examples of computing the critical points of the discriminant locus for parameterized polynomial systems.
18#
發(fā)表于 2025-3-24 15:10:57 | 只看該作者
Nilpotent Quotients of Associative ,-Algebras and Augmentation Quotients of Baumslag-Solitar Groups successive quotients of powers of the augmentation ideal .(.) of the integral group ring ., where . is a finitely presented group. We apply these methods to obtain conjectures for augmentation quotients of the Baumslag-Solitar groups .(.,?.) with . equal to 0,?1 or a prime ..
19#
發(fā)表于 2025-3-24 20:23:20 | 只看該作者
20#
發(fā)表于 2025-3-25 03:15:29 | 只看該作者
0302-9743 sted of 20 topical sessions, each of which providing an overview of the challenges, achievements and progress in a environment of mathematical software research, development and use..978-3-030-52199-8978-3-030-52200-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陵川县| 新竹县| 台前县| 独山县| 稷山县| 迭部县| 双辽市| 醴陵市| 康乐县| 石家庄市| 南靖县| 西和县| 措勤县| 石柱| 桦甸市| 内丘县| 天祝| 云南省| 祁门县| 昔阳县| 乌恰县| 佛山市| 章丘市| 玛纳斯县| 双桥区| 兰州市| 四平市| 栾川县| 乌苏市| 阿拉善左旗| 建昌县| 华蓥市| 栾城县| 桓台县| 钟山县| 凯里市| 黎平县| 冷水江市| 云阳县| 左贡县| 永靖县|