找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Software - ICMS 2010; Third International Komei Fukuda,Joris van der Hoeven,Nobuki Takayama Conference proceedings 2010 Sprin

[復制鏈接]
樓主: Spring
31#
發(fā)表于 2025-3-26 22:24:50 | 只看該作者
32#
發(fā)表于 2025-3-27 03:30:02 | 只看該作者
The Dynamic Dictionary of Mathematical Functions (DDMF)athematical formulas on elementary and special functions. The formulas are automatically generated by computer algebra routines. The user can ask for more terms of the expansions, more digits of the numerical values, or proofs of some of the formulas.
33#
發(fā)表于 2025-3-27 07:18:53 | 只看該作者
Computing Polycyclic Quotients of Finitely (L-)Presented Groups via Groebner Basesycyclic quotients of groups defined by a so-called finite .-presentation. This type of presentation incorporates all finite presentations as well as certain infinite presentations. The algorithm allows a variety of polycyclic quotients ranging from maximal nilpotent quotients of a given class to the
34#
發(fā)表于 2025-3-27 11:04:34 | 只看該作者
35#
發(fā)表于 2025-3-27 16:13:59 | 只看該作者
Towards High-Performance Computational Algebra with GAPwhile preserving as much of the existing codebase (about one million lines of code) with as few changes as possible without requiring users (a large percentage of which are domain experts in their fields without necessarily having a background in parallel programming) to have to learn complicated pa
36#
發(fā)表于 2025-3-27 21:30:47 | 只看該作者
37#
發(fā)表于 2025-3-27 22:07:49 | 只看該作者
38#
發(fā)表于 2025-3-28 04:13:39 | 只看該作者
39#
發(fā)表于 2025-3-28 07:09:02 | 只看該作者
Controlled Perturbation for Certified Geometric Computing with Fixed-Precision Arithmeticumptions of most theoretical geometric algorithms concerning the handling of robustness issues, namely issues related to arithmetic precision and degenerate input. Controlled perturbation, an approach to robust implementation of geometric algorithms we introduced in the late 1990’s, aims at removing
40#
發(fā)表于 2025-3-28 13:00:14 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-20 23:01
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
沧州市| 定陶县| 明星| 枣强县| 武山县| 达州市| 汝阳县| 保山市| 万山特区| 赞皇县| 大城县| 尉犁县| 冀州市| 红原县| 泰宁县| 信宜市| 筠连县| 新余市| 游戏| 卢氏县| 四会市| 伊春市| 贵州省| 上高县| 琼结县| 黑水县| 那曲县| 新野县| 麻栗坡县| 汾西县| 荣昌县| 太和县| 永登县| 芜湖市| 尼玛县| 徐水县| 钦州市| 兴化市| 凭祥市| 桐柏县| 南溪县|