找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Programming at Oberwolfach; H. K?nig,B. Korte,K. Ritter Book 1981Latest edition Springer-Verlag Berlin Heidelberg 1981 Mathem

[復(fù)制鏈接]
樓主: MAXIM
21#
發(fā)表于 2025-3-25 04:28:40 | 只看該作者
22#
發(fā)表于 2025-3-25 09:12:00 | 只看該作者
23#
發(fā)表于 2025-3-25 15:39:07 | 只看該作者
24#
發(fā)表于 2025-3-25 18:00:15 | 只看該作者
25#
發(fā)表于 2025-3-25 20:52:42 | 只看該作者
Algorithmic versus axiomatic definitions of matroids,nd calculations of the complexity of matroid properties with respect to various “oracles”. Of particular interest is the fact that matroids can be also axiomatically defined by a girth function and that the GIRTH oracle is significantly stronger than the more standard oracles.
26#
發(fā)表于 2025-3-26 01:27:40 | 只看該作者
,On conditions warranting Φ-subdifferentiability,e a neighbourhood . of .., a neighbourhood . of .. and a constant .>0 such that for .?..The investigations of γ-paraconvexity were stimulated by investigations of H?lder and Lipschitz differentiability of Lagrangians considered by Dolecki and Kurcyusz in [8].
27#
發(fā)表于 2025-3-26 06:47:20 | 只看該作者
Linear programming by an effective method using triangular matrices, constraint becomes inactive, the computational effort in solving the triangular systems corresponds to that of the matrix-updating in the projection method, whereas in all other cases the effort is reduced. This reduction can be very high. Cycling of the method is excluded by a very simple rule.
28#
發(fā)表于 2025-3-26 11:51:46 | 只看該作者
Secant approximation methods for convex optimization,bounds on the optimal value are derived from the piecewise-linear approximations. Convergence to the optimal value of the given problem is established under mild hypotheses. The method has been successfully tested on a variety of problems, including a water supply problem with more than 900 variables and 600 constraints.
29#
發(fā)表于 2025-3-26 13:13:09 | 只看該作者
30#
發(fā)表于 2025-3-26 19:52:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
无棣县| 渝中区| 哈密市| 长岭县| 绥江县| 庄河市| 思茅市| 西乌珠穆沁旗| 鹤岗市| 平南县| 霍林郭勒市| 南充市| 雅江县| 阜宁县| 米泉市| 洛扎县| 北票市| 孝感市| 定陶县| 满洲里市| 滨海县| 定结县| 三台县| 沙洋县| 清徐县| 且末县| 吴忠市| 荔浦县| 宿州市| 云梦县| 芦山县| 白朗县| 阿克| 乐平市| 商水县| 专栏| 都兰县| 来宾市| 宜阳县| 攀枝花市| 阿拉善左旗|