找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Problems of the Dynamics of Incompressible Fluid on a Rotating Sphere; Yuri N. Skiba Book 2017 Springer International Publish

[復(fù)制鏈接]
樓主: frustrate
11#
發(fā)表于 2025-3-23 11:27:22 | 只看該作者
Introduction,y-Haurwitz waves, modons, and Wu-Verkley waves..In 1950, the BVE was chosen as the first approximate model of the atmosphere in the general plan of attacking the problem of numerical weather prediction. Also, in the case of an ideal fluid, the conservation laws for a BVE solution allowed studying th
12#
發(fā)表于 2025-3-23 17:34:37 | 只看該作者
13#
發(fā)表于 2025-3-23 20:52:13 | 只看該作者
14#
發(fā)表于 2025-3-24 00:39:52 | 只看該作者
15#
發(fā)表于 2025-3-24 05:51:37 | 只看該作者
Stability of Rossby-Haurwitz (RH) Waves,ry BVE solutions as the Legendre polynomial (LP) flow, RH wave, WV wave, and modons..This chapter is devoted to the stability of the Rossby-Haurwitz waves and LP flows. In Sect.?., we derive a conservation law for arbitrary perturbations of LP flow and RH wave. Invariant sets (..., ., ......, and .,
16#
發(fā)表于 2025-3-24 07:23:16 | 只看該作者
17#
發(fā)表于 2025-3-24 12:24:58 | 只看該作者
Linear and Nonlinear Stability of Flows, and Haynes set limits on the growth rate of unstable modes and provide information on the time–space structure of unstable disturbances. Nevertheless, the effectiveness of the necessary conditions for instability can be quite scanty. For example, any sufficiently strong LP flow of degree . ≥ 3 sati
18#
發(fā)表于 2025-3-24 15:07:58 | 只看該作者
19#
發(fā)表于 2025-3-24 19:11:40 | 只看該作者
20#
發(fā)表于 2025-3-25 00:43:28 | 只看該作者
Mathematical Problems of the Dynamics of Incompressible Fluid on a Rotating Sphere
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 19:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彩票| 固始县| 武义县| 贡觉县| 马关县| 连山| 沭阳县| 新密市| 舞阳县| 新乡市| 胶南市| 原阳县| 阿拉善盟| 嘉黎县| 格尔木市| 吴忠市| 桃江县| 逊克县| 渭源县| 琼海市| 乌拉特中旗| 平定县| 洪雅县| 龙岩市| 克拉玛依市| 名山县| 本溪| 驻马店市| 衡水市| 荣成市| 石屏县| 会宁县| 连城县| 营山县| 清水河县| 抚顺县| 乐陵市| 阜南县| 周口市| 肇源县| 永吉县|