找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Principles of Topological and Geometric Data Analysis; Parvaneh Joharinad,Jürgen Jost Textbook 2023 The Editor(s) (if applica

[復(fù)制鏈接]
查看: 48737|回復(fù): 46
樓主
發(fā)表于 2025-3-21 17:45:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Mathematical Principles of Topological and Geometric Data Analysis
編輯Parvaneh Joharinad,Jürgen Jost
視頻videohttp://file.papertrans.cn/627/626522/626522.mp4
概述The first book to develop the geometric foundations of manifold learning.Provides the mathematical prerequisites for the dimension reduction techniques of machine learning.General notion of curvature
叢書名稱Mathematics of Data
圖書封面Titlebook: Mathematical Principles of Topological and Geometric Data Analysis;  Parvaneh Joharinad,Jürgen Jost Textbook 2023 The Editor(s) (if applica
描述.This book explores and demonstrates how geometric tools can be used in data analysis. Beginning with a systematic exposition of the mathematical prerequisites, covering topics ranging from category theory to algebraic topology, Riemannian geometry, operator theory and network analysis, it goes on to describe and analyze some of the most important machine learning techniques for dimension reduction, including the different types of manifold learning and kernel methods. It also develops a new notion of curvature of generalized metric spaces, based on the notion of hyperconvexity, which can be used for the topological representation of geometric information..In recent years there has been a fascinating development: concepts and methods originally created in the context of research in pure mathematics, and in particular in geometry, have become powerful tools in machine learning for the analysis of data. The underlying reason for this is that data are typically equipped with somekind of notion of distance, quantifying the differences between data points. Of course, to be successfully applied, the geometric tools usually need to be redefined, generalized, or extended appropriately..Pri
出版日期Textbook 2023
關(guān)鍵詞Riemannian geometry; Laplace operators; homology; category theory; Dimension reduction; Kernel technique;
版次1
doihttps://doi.org/10.1007/978-3-031-33440-5
isbn_softcover978-3-031-33442-9
isbn_ebook978-3-031-33440-5Series ISSN 2731-4103 Series E-ISSN 2731-4111
issn_series 2731-4103
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Mathematical Principles of Topological and Geometric Data Analysis影響因子(影響力)




書目名稱Mathematical Principles of Topological and Geometric Data Analysis影響因子(影響力)學(xué)科排名




書目名稱Mathematical Principles of Topological and Geometric Data Analysis網(wǎng)絡(luò)公開度




書目名稱Mathematical Principles of Topological and Geometric Data Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Mathematical Principles of Topological and Geometric Data Analysis被引頻次




書目名稱Mathematical Principles of Topological and Geometric Data Analysis被引頻次學(xué)科排名




書目名稱Mathematical Principles of Topological and Geometric Data Analysis年度引用




書目名稱Mathematical Principles of Topological and Geometric Data Analysis年度引用學(xué)科排名




書目名稱Mathematical Principles of Topological and Geometric Data Analysis讀者反饋




書目名稱Mathematical Principles of Topological and Geometric Data Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:59:00 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:29:42 | 只看該作者
地板
發(fā)表于 2025-3-22 04:59:22 | 只看該作者
5#
發(fā)表于 2025-3-22 11:31:04 | 只看該作者
Mathematical Principles of Topological and Geometric Data Analysis978-3-031-33440-5Series ISSN 2731-4103 Series E-ISSN 2731-4111
6#
發(fā)表于 2025-3-22 16:31:57 | 只看該作者
7#
發(fā)表于 2025-3-22 19:27:21 | 只看該作者
Weighted Complexes, Cohomology and Laplace Operators,tors and their adjoints, Laplace type operators. The spectrum of a Laplace operator will encode important properties of the underlying geometric object, and therefore, in this chapter, we develop the spectral theory of such operators in an abstract manner.
8#
發(fā)表于 2025-3-22 22:18:57 | 只看該作者
9#
發(fā)表于 2025-3-23 02:31:20 | 只看該作者
Metrics and Curvature, Our notion is very abstract and therefore also naturally applies to discrete metric spaces, as naturally emerging from data. We conclude by presenting a construction of a simplicial complex (typically infinite-dimensional) that as a topological object encodes all geometric properties of the metric that we want to represent.
10#
發(fā)表于 2025-3-23 08:57:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
杭锦旗| 广灵县| 蕲春县| 格尔木市| 秭归县| 长治县| 故城县| 沅江市| 上思县| 松溪县| 油尖旺区| 许昌市| 遂平县| 榆社县| 若尔盖县| 永昌县| 长武县| 云梦县| 青河县| 株洲市| 万安县| 明星| 东莞市| 滁州市| 稻城县| 高尔夫| 西乌珠穆沁旗| 洱源县| 博罗县| 崇礼县| 汉寿县| 桑植县| 饶平县| 北流市| 翁源县| 奉新县| 射阳县| 东至县| 龙岩市| 靖宇县| 利津县|