找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Physics and Its Interactions; In Honor of the 60th Shuji Machihara Conference proceedings 2024 The Editor(s) (if applicable) a

[復(fù)制鏈接]
樓主: ATE
21#
發(fā)表于 2025-3-25 04:53:05 | 只看該作者
Conference proceedings 2024ysics and Its Interactions,‘ initially scheduled for the summer of 2021 in Tokyo, Japan. It celebrates Tohru Ozawa‘s 60th birthday and his extensive contributions in many fields..The works gathered in this volume explore interactions between mathematical physics, various types of partial differentia
22#
發(fā)表于 2025-3-25 07:58:55 | 只看該作者
,Convexity Phenomena Arising in?an?Area-Preserving Crystalline Curvature Flow,om a non-convex initial polygon becomes convex in a finite time. In order to show this assertion, we classify edge-disappearing patterns completely and prove that all zero-curvature edges disappear in a finite time, and we also show that evolution process of the flow can be continued beyond such edge-disappearing singularities.
23#
發(fā)表于 2025-3-25 15:06:59 | 只看該作者
24#
發(fā)表于 2025-3-25 19:45:23 | 只看該作者
,Asymptotic Behavior in Time of Solution to System of Cubic Nonlinear Schr?dinger Equations in One Sis kind of behavior seems new. Further, several examples of systems which admit solution with several types of behavior such as modified scattering, nonlinear amplification, and nonlinear dissipation, are given. We also extend our previous classification result of nonlinear cubic systems.
25#
發(fā)表于 2025-3-25 23:58:14 | 只看該作者
26#
發(fā)表于 2025-3-26 03:01:55 | 只看該作者
27#
發(fā)表于 2025-3-26 05:44:15 | 只看該作者
,Remarks on Blow up of Solutions of Nonlinear Wave Equations in?Friedmann-Lema?tre-Robertson-Walker?Consider nonlinear wave equations in the spatially flat Friedmann-Lema?tre-Robertson-Walker (FLRW) spacetimes. We improve some upper bounds of the lifespan of blow-up solutions for the power nonlinearity. We also show upper bounds of the lifespan in the critical cases for the time derivative nonlinearity.
28#
發(fā)表于 2025-3-26 09:19:13 | 只看該作者
29#
發(fā)表于 2025-3-26 15:38:53 | 只看該作者
30#
發(fā)表于 2025-3-26 18:12:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永济市| 类乌齐县| 郁南县| 穆棱市| 西华县| 江西省| 裕民县| 澄城县| 绍兴县| 时尚| 平塘县| 新昌县| 邛崃市| 土默特右旗| 马关县| 高安市| 体育| 施秉县| 兴隆县| 沅陵县| 航空| 静海县| 嘉禾县| 乡宁县| 茌平县| 达州市| 沙河市| 静安区| 泰和县| 连平县| 镇雄县| 甘谷县| 广西| 七台河市| 桃江县| 鸡东县| 靖宇县| 胶州市| 宁阳县| 龙州县| 郧西县|