找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Physics X; Proceedings of the X Konrad Schmüdgen Conference proceedings 1992 Springer-Verlag Berlin Heidelberg 1992 (Nichtkomm

[復(fù)制鏈接]
樓主: 矜持
11#
發(fā)表于 2025-3-23 10:48:10 | 只看該作者
Dynamical Zeta Functions: Where Do They Come from and What Are They Good for ?The properties and usefulness of dynamical zeta functions associated with maps and flows are discussed, and they are compared with the more traditional number-theoretic zeta functions.
12#
發(fā)表于 2025-3-23 15:17:38 | 只看該作者
13#
發(fā)表于 2025-3-23 18:01:09 | 只看該作者
14#
發(fā)表于 2025-3-23 22:25:22 | 只看該作者
15#
發(fā)表于 2025-3-24 02:20:48 | 只看該作者
Asymptotic Completeness for ,-Body Quantum SystemsWe give a sketch of a geometrical proof of asymptotic completeness for an arbitrary number of quantum particles interacting through short-range pair potentials.
16#
發(fā)表于 2025-3-24 09:49:28 | 只看該作者
17#
發(fā)表于 2025-3-24 11:31:10 | 只看該作者
18#
發(fā)表于 2025-3-24 15:16:41 | 只看該作者
19#
發(fā)表于 2025-3-24 21:13:36 | 只看該作者
Mathematical Theory of Classical Fields and General Relativitye success of Riemann’s visionary ideas in the formulation of General Relativity, have stayed away, with few notable exceptions, from the fundamental new twist given to them by Einstein who replaced the positive definite metric of Riemannian Geometry by a Lorentzian, or more appropriate, Einsteinian metric.
20#
發(fā)表于 2025-3-25 01:45:06 | 只看該作者
Hamiltonian Methods in Conformal Field Theoryl them the conformists to distinguish from die konformisten). New terminology and methodology, e.g. primary fields, vertex operators, operator expansion, mixing of states and operators is indispensable for the paper on CFT.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 07:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
许昌县| 平顺县| 广昌县| 和田市| 壤塘县| 定远县| 枞阳县| 余姚市| 彭州市| 鹿邑县| 瓦房店市| 鄂托克前旗| 南皮县| 尉犁县| 金华市| 木兰县| 竹北市| 修武县| 循化| 海南省| 泰兴市| 昭觉县| 醴陵市| 张家口市| 梁平县| 博野县| 昌乐县| 江安县| 交口县| 镇赉县| 中阳县| 房山区| 磐石市| 高平市| 盖州市| 云龙县| 潮州市| 南京市| 塔河县| 南投县| 遂平县|