找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Mysteries; The Beauty and Magic Calvin C. Clawson Book 1996 Calvin C. Clawson 1996 algebra.Mathematica.mathematics

[復制鏈接]
查看: 44004|回復: 57
樓主
發(fā)表于 2025-3-21 19:10:20 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Mathematical Mysteries
副標題The Beauty and Magic
編輯Calvin C. Clawson
視頻videohttp://file.papertrans.cn/627/626477/626477.mp4
圖書封面Titlebook: Mathematical Mysteries; The Beauty and Magic Calvin C. Clawson Book 1996 Calvin C. Clawson 1996 algebra.Mathematica.mathematics
出版日期Book 1996
關鍵詞algebra; Mathematica; mathematics
版次1
doihttps://doi.org/10.1007/978-1-4899-6080-1
isbn_softcover978-0-306-45404-2
isbn_ebook978-1-4899-6080-1
copyrightCalvin C. Clawson 1996
The information of publication is updating

書目名稱Mathematical Mysteries影響因子(影響力)




書目名稱Mathematical Mysteries影響因子(影響力)學科排名




書目名稱Mathematical Mysteries網(wǎng)絡公開度




書目名稱Mathematical Mysteries網(wǎng)絡公開度學科排名




書目名稱Mathematical Mysteries被引頻次




書目名稱Mathematical Mysteries被引頻次學科排名




書目名稱Mathematical Mysteries年度引用




書目名稱Mathematical Mysteries年度引用學科排名




書目名稱Mathematical Mysteries讀者反饋




書目名稱Mathematical Mysteries讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:33:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:48:16 | 只看該作者
https://doi.org/10.1007/978-1-4899-6080-1algebra; Mathematica; mathematics
地板
發(fā)表于 2025-3-22 05:15:24 | 只看該作者
5#
發(fā)表于 2025-3-22 12:15:47 | 只看該作者
Sequences and Series,of our counting sequence was certainly one of the greatest of all humankind. And we can use this sequence as a basis for generating even more sophisticated mathematical concepts. From the notion of a sequence we can evolve the concept of limits, one of the most elegant and beautiful ideas in all of mathematics.
6#
發(fā)表于 2025-3-22 15:52:45 | 只看該作者
Into the Stratosphere,know if an infinity of twin primes exist, if either the Goldbach Conjecture or Riemann hypothesis is true. Many of us believe that given enough time and work, all these questions can be answered. Yet, is that the case? Given a statement in mathematics, can we say it is always possible to either prove or disprove it?
7#
發(fā)表于 2025-3-22 17:24:46 | 只看該作者
8#
發(fā)表于 2025-3-22 23:36:41 | 只看該作者
,Ramanujan’s Equations,We are now going to look at more of Ramanujan’s equations. I know that for some of you, the prospect of facing additional equations causes your heart to palpitate, and your palms to sweat. “Why,” you say, “does he have to use more of those darn equations? Why can’t he just say it in ordinary words?”
9#
發(fā)表于 2025-3-23 03:40:25 | 只看該作者
http://image.papertrans.cn/m/image/626477.jpg
10#
發(fā)表于 2025-3-23 06:22:30 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 22:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
都江堰市| 张家川| 永平县| 商城县| 扎兰屯市| 大荔县| 盐亭县| 阳原县| 东港市| 泰顺县| 漳浦县| 垦利县| 司法| 扬州市| 富阳市| 温州市| 桃园市| 广汉市| 怀化市| 陵水| 沛县| 新津县| 双江| 乐至县| 九龙坡区| 萍乡市| 青铜峡市| 延吉市| 肃北| 密云县| 镇远县| 马边| 静宁县| 香河县| 金山区| 贡山| 马尔康县| 华容县| 吉安市| 上杭县| 当涂县|