找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Models and Numerical Simulation in Electromagnetism; Alfredo Bermúdez,Dolores Gómez,Pilar Salgado Textbook 2014 Springer Inte

[復(fù)制鏈接]
樓主: invoke
41#
發(fā)表于 2025-3-28 15:54:18 | 只看該作者
42#
發(fā)表于 2025-3-28 19:52:26 | 只看該作者
Some solutions of Maxwell’s equations in free spacece of charges and currents. Thus, we consider classical examples in electrostatics and magnetostatics. By choosing suitable sets . and . in the integral form of Maxwell’s equations we will be able to obtain the electromagnetic fields.
43#
發(fā)表于 2025-3-28 23:42:11 | 只看該作者
Electrostaticsntial simpli-fications. For example, in electrostatics, charges do not move so there are no currents and then the magnetic field is null. In this chapter, we will study this model in terms of the electrostatic potential and introduce the concept of capacitance.
44#
發(fā)表于 2025-3-29 05:20:42 | 只看該作者
The eddy currents modelthe Ampère’s law. We will study this model in the time-harmonic regime and in bounded threedimensional and two-dimensional domains by using different unknowns. At the end of the chapter we give a brief description of the coupling between the eddy currents model and a lumped circuit model.
45#
發(fā)表于 2025-3-29 08:14:45 | 只看該作者
46#
發(fā)表于 2025-3-29 12:33:24 | 只看該作者
47#
發(fā)表于 2025-3-29 17:38:50 | 只看該作者
48#
發(fā)表于 2025-3-29 22:28:32 | 只看該作者
49#
發(fā)表于 2025-3-30 02:42:44 | 只看該作者
Eddy currents with MaxFEMIn this chapter we solve several examples governed by the time-harmonic eddy currents model by using MaxFEM. For some of the problems we will provide the analytical and the numerical solution. We exploit that some problems can be approximated by 2D or axisymmetric models but some others will require a genuine 3D model.
50#
發(fā)表于 2025-3-30 05:29:21 | 只看該作者
https://doi.org/10.1007/978-3-319-02949-8Maxwell‘s equations; electromagnetism; linear circuits; nonlinear magnetic and hysteresis; numerical sim
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金华市| 双峰县| 成都市| 维西| 永昌县| 冕宁县| 洛南县| 西宁市| 高清| 石楼县| 宁都县| 安义县| 汉源县| 曲靖市| 玉林市| 临朐县| 玉环县| 鹤壁市| 安达市| 外汇| 尼勒克县| 涪陵区| 淮阳县| 富川| 商水县| 镇坪县| 青岛市| 施秉县| 东安县| 永和县| 平罗县| 津南区| 建德市| 当阳市| 五家渠市| 赤峰市| 台北县| 石林| 康乐县| 江川县| 稻城县|