找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Models and Numerical Simulation in Electromagnetism; Alfredo Bermúdez,Dolores Gómez,Pilar Salgado Textbook 2014 Springer Inte

[復(fù)制鏈接]
樓主: invoke
41#
發(fā)表于 2025-3-28 15:54:18 | 只看該作者
42#
發(fā)表于 2025-3-28 19:52:26 | 只看該作者
Some solutions of Maxwell’s equations in free spacece of charges and currents. Thus, we consider classical examples in electrostatics and magnetostatics. By choosing suitable sets . and . in the integral form of Maxwell’s equations we will be able to obtain the electromagnetic fields.
43#
發(fā)表于 2025-3-28 23:42:11 | 只看該作者
Electrostaticsntial simpli-fications. For example, in electrostatics, charges do not move so there are no currents and then the magnetic field is null. In this chapter, we will study this model in terms of the electrostatic potential and introduce the concept of capacitance.
44#
發(fā)表于 2025-3-29 05:20:42 | 只看該作者
The eddy currents modelthe Ampère’s law. We will study this model in the time-harmonic regime and in bounded threedimensional and two-dimensional domains by using different unknowns. At the end of the chapter we give a brief description of the coupling between the eddy currents model and a lumped circuit model.
45#
發(fā)表于 2025-3-29 08:14:45 | 只看該作者
46#
發(fā)表于 2025-3-29 12:33:24 | 只看該作者
47#
發(fā)表于 2025-3-29 17:38:50 | 只看該作者
48#
發(fā)表于 2025-3-29 22:28:32 | 只看該作者
49#
發(fā)表于 2025-3-30 02:42:44 | 只看該作者
Eddy currents with MaxFEMIn this chapter we solve several examples governed by the time-harmonic eddy currents model by using MaxFEM. For some of the problems we will provide the analytical and the numerical solution. We exploit that some problems can be approximated by 2D or axisymmetric models but some others will require a genuine 3D model.
50#
發(fā)表于 2025-3-30 05:29:21 | 只看該作者
https://doi.org/10.1007/978-3-319-02949-8Maxwell‘s equations; electromagnetism; linear circuits; nonlinear magnetic and hysteresis; numerical sim
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大城县| 黄山市| 台北县| 河曲县| 什邡市| 开平市| 霍邱县| 永昌县| 思茅市| 肇庆市| 留坝县| 儋州市| 定陶县| 安新县| 隆昌县| 舞钢市| 罗甸县| 教育| 望谟县| 临邑县| 沂源县| 卫辉市| 临沂市| 辰溪县| 曲阜市| 葵青区| 宁国市| 古丈县| 阿克| 房产| 吉水县| 寻乌县| 中江县| 曲沃县| 潞城市| 高阳县| 南城县| 长海县| 壤塘县| 阜南县| 晋州市|