找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy; Proceedings of the S Manoj Sahni,José M. Merigó,Rajkumar

[復(fù)制鏈接]
樓主: 教條
51#
發(fā)表于 2025-3-30 12:17:07 | 只看該作者
Novel Generalized Divergence Measure for Intuitionistic Fuzzy Sets and Its Applications in Medical Dy, inference, and discrimination. Intuitionistic fuzzy sets (IFSs) are very useful to manage the unassured state of data. For the evaluation of relationships of IFSs, divergence measures of IFSs are necessary. The information of each set in the matrix is formulated by the introduced intuitionistic f
52#
發(fā)表于 2025-3-30 12:27:19 | 只看該作者
53#
發(fā)表于 2025-3-30 19:24:48 | 只看該作者
roceedings of five international workshops held in conjunction with PAKDD 2011 in Shenzhen, China, in May 2011: the International Workshop on Behavior Informatics (BI 2011), the Workshop on Quality Issues, Measures of Interestingness and Evaluation of Data Mining Models (QIMIE 2011), the Workshop on
54#
發(fā)表于 2025-3-30 23:22:12 | 只看該作者
J. Catherine Grace Johnn use such knowledge of change to adapt business strategies in response to changing circumstances. This paper is aimed at the visual exploration of migrations of cluster entities over time using Self-Organizing Maps. The contribution is a method for analyzing and visualizing entity migration between
55#
發(fā)表于 2025-3-31 02:48:06 | 只看該作者
Anuradha Sabharwal,Pooja Yadavcases. Recent research has explored using linked open datasets for handling exceptions. However, most research uses domain-dependent datasets developed by specific authorities. To handle legal rule exceptions, which typically need knowledge from various domains and need to be updated in response to
56#
發(fā)表于 2025-3-31 05:50:18 | 只看該作者
Dinesh Udar search space. In recent years, machine learning methods such as deep learning have achieved remarkable results in various fields. Although machine learning methods depend on data sets, it is sometimes difficult to prepare good-quality data for some tasks, and unsupervised learning methods have also
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 08:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
红安县| 和田县| 云浮市| 峨眉山市| 庆安县| 太湖县| 南充市| 集贤县| 湟源县| 鄱阳县| 久治县| 随州市| 禄劝| 长葛市| 萨迦县| 枝江市| 定安县| 延边| 三河市| 巴南区| 陆良县| 陵水| 五寨县| 曲沃县| 巢湖市| 固阳县| 林西县| 亚东县| 信宜市| 招远市| 塘沽区| 尉犁县| 威远县| 临澧县| 平罗县| 平原县| 苏州市| 昭觉县| 武汉市| 宁安市| 台北县|