找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Modeling and Supercomputer Technologies; 22nd International C Dmitry Balandin,Konstantin Barkalov,Iosif Meyerov Conference pro

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-27 00:37:01 | 只看該作者
Investigation of?a?Queueing System with?Two Classes of?Jobs, Bernoulli Feedback, and?a?Threshold Swi job classes have different arrival intensities and different batch size distributions. Service times and setup times are random with exponential probability distributions. A control algorithm is parametrized by a threshold?.: first-class jobs are taken for service only if the number of the second-c
32#
發(fā)表于 2025-3-27 01:14:04 | 只看該作者
33#
發(fā)表于 2025-3-27 06:55:51 | 只看該作者
34#
發(fā)表于 2025-3-27 10:29:00 | 只看該作者
35#
發(fā)表于 2025-3-27 14:52:19 | 只看該作者
Global Optimization Method Based on?the?Survival of?the?Fittest Algorithmhods do not guarantee that the generated sequence of test points converges to a global extremum in any sense. The purpose of this paper is to construct and prove convergence of a new evolutionary global optimization algorithm. This algorithm is created on the base of the Survival of the Fittest algo
36#
發(fā)表于 2025-3-27 20:33:40 | 只看該作者
37#
發(fā)表于 2025-3-27 23:01:51 | 只看該作者
Conference proceedings 2022 2022, held in?Nizhny Novgorod, Russia, in November 2022.?.The 20 full papers and 5 short papers presented in the volume were thoroughly reviewed and selected from the 48 submissions. They are organized in topical secions on ?computational methods for mathematical models analysis; computation in opt
38#
發(fā)表于 2025-3-28 03:48:18 | 只看該作者
39#
發(fā)表于 2025-3-28 06:43:21 | 只看該作者
40#
發(fā)表于 2025-3-28 11:45:38 | 只看該作者
Nonintegrability of?the?Problem of?Motion of?an?Ellipsoidal Body with?a?Fixed Point in?a?Flow of?Parxistence in the considered problem of an additional analytic first integral independent of the energy integral. We proved that the obtained necessary conditions are not fulfilled for the rigid body with a mass distribution corresponding to the classical Kovalevskaya integrable case in the problem of motion of a heavy rigid body with a fixed point.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 18:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
益阳市| 班戈县| 安龙县| 京山县| 莒南县| 南木林县| 凤阳县| 肃南| 教育| 文昌市| 会同县| 凌海市| 泽普县| 沙洋县| 鹿泉市| 青铜峡市| 绥芬河市| 大同市| 南丹县| 金华市| 泊头市| 紫阳县| 灌云县| 叙永县| 泰兴市| 增城市| 清徐县| 汨罗市| 财经| 阳朔县| 紫云| 磴口县| 法库县| 梓潼县| 泸溪县| 凤凰县| 新郑市| 衡阳县| 宝兴县| 建昌县| 富宁县|