找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Modeling and Applications in Nonlinear Dynamics; Albert C.J. Luo,Hüseyin Merdan Book 2016 Springer International Publishing A

[復(fù)制鏈接]
樓主: HBA1C
11#
發(fā)表于 2025-3-23 11:34:23 | 只看該作者
12#
發(fā)表于 2025-3-23 16:43:32 | 只看該作者
Random Noninstantaneous Impulsive Models for Studying Periodic Evolution Processes in Pharmacotheraby random, noninstantaneous, impulsive, nonautonomous periodic evolution equations. This type of impulsive equation can describe the injection of drugs in the bloodstream, and the consequent absorption of them in the body is a random, periodic, gradual, and continuous process. Sufficient conditions
13#
發(fā)表于 2025-3-23 19:32:54 | 只看該作者
14#
發(fā)表于 2025-3-23 23:23:48 | 只看該作者
15#
發(fā)表于 2025-3-24 05:49:38 | 只看該作者
,Mathematical Analysis of a Delayed Hematopoietic Stem Cell Model with Wazewska–Lasota Functional Preir stability with respect to the time delay and the apoptosis rate of proliferating cells. We show that a sequence of Hopf bifurcations occurs at the positive steady state as the delay crosses some critical values. We illustrate our results with some numerical simulations.
16#
發(fā)表于 2025-3-24 07:08:08 | 只看該作者
Random Noninstantaneous Impulsive Models for Studying Periodic Evolution Processes in Pharmacotheraon the existence of periodic and subharmonic solutions are established, as are other related results such as their globally asymptotic stability. The dynamical properties are also derived for the whole system, leading to the theory of fractals. Finally, examples are given to illustrate our theoretical results.
17#
發(fā)表于 2025-3-24 10:56:23 | 只看該作者
18#
發(fā)表于 2025-3-24 17:11:51 | 只看該作者
,Delay Effects on the Dynamics of the Lengyel–Epstein Reaction-Diffusion Model, theory and the center manifold reduction for partial functional differential equations, we also determine the direction of the Hopf bifurcations and the stability of bifurcating periodic solutions for the PDE model. Finally, we perform some numerical simulations to support analytical results obtained for the ODE models.
19#
發(fā)表于 2025-3-24 22:32:27 | 只看該作者
20#
發(fā)表于 2025-3-25 01:16:40 | 只看該作者
On Periodic Motions in a Time-Delayed, Quadratic Nonlinear Oscillator with Excitation,urier series, and the stability and bifurcation analysis for periodic motions are discussed. The bifurcation trees of period-1 motion to chaos can be presented. Numerical illustration of periodic motion is given to verify the analytical solutions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邓州市| 堆龙德庆县| 若尔盖县| 石柱| 淮安市| 吴堡县| 襄汾县| 塘沽区| 宣恩县| 马公市| 高邑县| 沁源县| 清流县| 友谊县| 溧水县| 大连市| 威宁| 大竹县| 伊川县| 翁源县| 依兰县| 乡宁县| 微山县| 布尔津县| 渑池县| 开原市| 阳信县| 伊宁市| 鄂托克前旗| 饶阳县| 嘉鱼县| 阿尔山市| 柳江县| 思南县| 石河子市| 新宾| 博湖县| 铜梁县| 四川省| 灵璧县| 泰来县|