找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Methods of Classical Mechanics; V. I. Arnold Textbook 1989Latest edition Springer-Verlag New York 1989 Lagrangian mechanics.M

[復(fù)制鏈接]
查看: 17507|回復(fù): 41
樓主
發(fā)表于 2025-3-21 17:20:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Mathematical Methods of Classical Mechanics
編輯V. I. Arnold
視頻videohttp://file.papertrans.cn/627/626282/626282.mp4
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Mathematical Methods of Classical Mechanics;  V. I. Arnold Textbook 1989Latest edition Springer-Verlag New York 1989 Lagrangian mechanics.M
描述In this text, the author constructs the mathematical apparatus of classical mechanics from the beginning, examining all the basic problems in dynamics, including the theory of oscillations, the theory of rigid body motion, and the Hamiltonian formalism. This modern approch, based on the theory of the geometry of manifolds, distinguishes iteself from the traditional approach of standard textbooks. Geometrical considerations are emphasized throughout and include phase spaces and flows, vector fields, and Lie groups. The work includes a detailed discussion of qualitative methods of the theory of dynamical systems and of asymptotic methods like perturbation techniques, averaging, and adiabatic invariance.
出版日期Textbook 1989Latest edition
關(guān)鍵詞Lagrangian mechanics; Mathematische Physik; Mechanik; Rigid body; Vector field; classical mechanics; diffe
版次2
doihttps://doi.org/10.1007/978-1-4757-2063-1
isbn_softcover978-1-4419-3087-3
isbn_ebook978-1-4757-2063-1Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer-Verlag New York 1989
The information of publication is updating

書目名稱Mathematical Methods of Classical Mechanics影響因子(影響力)




書目名稱Mathematical Methods of Classical Mechanics影響因子(影響力)學(xué)科排名




書目名稱Mathematical Methods of Classical Mechanics網(wǎng)絡(luò)公開度




書目名稱Mathematical Methods of Classical Mechanics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Mathematical Methods of Classical Mechanics被引頻次




書目名稱Mathematical Methods of Classical Mechanics被引頻次學(xué)科排名




書目名稱Mathematical Methods of Classical Mechanics年度引用




書目名稱Mathematical Methods of Classical Mechanics年度引用學(xué)科排名




書目名稱Mathematical Methods of Classical Mechanics讀者反饋




書目名稱Mathematical Methods of Classical Mechanics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:40:44 | 只看該作者
Rigid bodies, first because they were solved by Euler and Lagrange, and also because we live in three-dimensional euclidean space, so that most of the mechanical systems with a finite number of degrees of freedom which we are likely to encounter consist of rigid bodies.
板凳
發(fā)表于 2025-3-22 04:20:08 | 只看該作者
地板
發(fā)表于 2025-3-22 06:15:31 | 只看該作者
Introduction to perturbation theoryetely solvable “unperturbed” problems. These methods can be easily justified if we are investigating motion over a small interval of time. Relatively little is known about how far we can trust the conclusions of perturbation theory in investigating motion over large or infinite intervals of time.
5#
發(fā)表于 2025-3-22 11:14:08 | 只看該作者
6#
發(fā)表于 2025-3-22 16:18:58 | 只看該作者
ces on behavior. Many of us think the answer is yes (Bouchard & Propping, 1993). Work with monozygotic twins reared apart provides an imperfect, but nevertheless powerful window on the direct influence of genes on whole organisms. Extended behavior genetics designs that include twins also provide im
7#
發(fā)表于 2025-3-22 20:02:10 | 只看該作者
978-1-4419-3087-3Springer-Verlag New York 1989
8#
發(fā)表于 2025-3-22 22:28:04 | 只看該作者
Mathematical Methods of Classical Mechanics978-1-4757-2063-1Series ISSN 0072-5285 Series E-ISSN 2197-5612
9#
發(fā)表于 2025-3-23 04:41:21 | 只看該作者
10#
發(fā)表于 2025-3-23 06:08:12 | 只看該作者
Investigation of the equations of motionIn most cases (for example, in the three-body problem) we can neither solve the system of differential equations nor completely describe the behavior of the solutions. In this chapter we consider a few simple but important problems for which Newton’s equations can be solved.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凌云县| 金阳县| 秦安县| 江口县| 呼图壁县| 泗阳县| 新建县| 德庆县| 石门县| 合水县| 沧州市| 石河子市| 奇台县| 托里县| 安陆市| 九江县| 德兴市| 绍兴县| 定日县| 富顺县| 海伦市| 台南市| 安溪县| 耿马| 翼城县| 镇雄县| 阜城县| 福鼎市| 重庆市| 平山县| 宣恩县| 鸡西市| 丁青县| 黔南| 台中市| 墨玉县| 托克托县| 沈阳市| 明溪县| 新郑市| 长丰县|