找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Methods in Kinetic Theory; Carlo Cercignani Book 1969 Springer Science+Business Media New York 1969 kinetic theory.Mathematic

[復(fù)制鏈接]
樓主: 萌芽的心
11#
發(fā)表于 2025-3-23 10:55:03 | 只看該作者
Basic Principles,t number of particles, such as the number of molecules contained in a lump of matter of macroscopic dimensions. The aim of statistical mechanics is to explain the macroscopic behavior of matter in terms of the mechanical behavior of the constituent molecules, i.e., in terms of motions and interactio
12#
發(fā)表于 2025-3-23 16:15:55 | 只看該作者
13#
發(fā)表于 2025-3-23 19:58:53 | 只看該作者
The Linearized Collision Operator,he only known exact solution [another solution is due to Ikenberry and Truesdell (see ref. 1) but is interesting only for illustrative purposes]. The meaning of the Maxwellian distribution is clear : it describes equilibrium states (or slight generalizations of them), characterized by the fact that
14#
發(fā)表于 2025-3-24 00:36:38 | 只看該作者
Model Equations,ersion, Eq. (1.1) of Chapter II, and the linearized form, Eq. (2.2) of Chapter III. It is therefore not surprising that alternative, simpler expressions have been proposed for the collision term; they are known as collision models, and any Boltzmann-like equation where the Boltzmann collision integr
15#
發(fā)表于 2025-3-24 04:21:58 | 只看該作者
The Linearized Boltzmann Equation,n number ; other procedures based on the assumption of a large Knudsen number will briefly be described later (Chapter VIII, Section 3). The above two procedures are valid in the so-called near-continuum (or slip) regime (Kn → 0) and in nearly-free regime (Kn → ∞). They are both based upon a specifi
16#
發(fā)表于 2025-3-24 10:31:53 | 只看該作者
Analytical Methods of Solution,he features of its solutions can be retained by using model equations. We can say more, that practically all the features are retained by a properly chosen model. The advantages offered by the models consist essentially in simplifying both the analytical and numerical procedures for solving boundary
17#
發(fā)表于 2025-3-24 13:56:26 | 只看該作者
18#
發(fā)表于 2025-3-24 14:57:18 | 只看該作者
19#
發(fā)表于 2025-3-24 19:50:31 | 只看該作者
https://doi.org/10.1007/978-1-4899-5409-1kinetic theory; Mathematica; mathematical method; mathematics
20#
發(fā)表于 2025-3-25 01:39:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
哈密市| 甘南县| 宜川县| 常德市| 上饶市| 乌拉特前旗| 麻城市| 金平| 社旗县| 潼南县| 修水县| 怀集县| 平昌县| 江永县| 富锦市| 大埔区| 咸阳市| 平武县| 南宁市| 福安市| 津南区| 卫辉市| 盘锦市| 宁晋县| 宁远县| 介休市| 昌都县| 自贡市| 博爱县| 高台县| 镇赉县| 崇左市| 台东市| 鄄城县| 西宁市| 长子县| 闽清县| 陆丰市| 雅江县| 金湖县| 宣汉县|