找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Methods in Kinetic Theory; Carlo Cercignani Book 1969 Springer Science+Business Media New York 1969 kinetic theory.Mathematic

[復(fù)制鏈接]
樓主: 萌芽的心
11#
發(fā)表于 2025-3-23 10:55:03 | 只看該作者
Basic Principles,t number of particles, such as the number of molecules contained in a lump of matter of macroscopic dimensions. The aim of statistical mechanics is to explain the macroscopic behavior of matter in terms of the mechanical behavior of the constituent molecules, i.e., in terms of motions and interactio
12#
發(fā)表于 2025-3-23 16:15:55 | 只看該作者
13#
發(fā)表于 2025-3-23 19:58:53 | 只看該作者
The Linearized Collision Operator,he only known exact solution [another solution is due to Ikenberry and Truesdell (see ref. 1) but is interesting only for illustrative purposes]. The meaning of the Maxwellian distribution is clear : it describes equilibrium states (or slight generalizations of them), characterized by the fact that
14#
發(fā)表于 2025-3-24 00:36:38 | 只看該作者
Model Equations,ersion, Eq. (1.1) of Chapter II, and the linearized form, Eq. (2.2) of Chapter III. It is therefore not surprising that alternative, simpler expressions have been proposed for the collision term; they are known as collision models, and any Boltzmann-like equation where the Boltzmann collision integr
15#
發(fā)表于 2025-3-24 04:21:58 | 只看該作者
The Linearized Boltzmann Equation,n number ; other procedures based on the assumption of a large Knudsen number will briefly be described later (Chapter VIII, Section 3). The above two procedures are valid in the so-called near-continuum (or slip) regime (Kn → 0) and in nearly-free regime (Kn → ∞). They are both based upon a specifi
16#
發(fā)表于 2025-3-24 10:31:53 | 只看該作者
Analytical Methods of Solution,he features of its solutions can be retained by using model equations. We can say more, that practically all the features are retained by a properly chosen model. The advantages offered by the models consist essentially in simplifying both the analytical and numerical procedures for solving boundary
17#
發(fā)表于 2025-3-24 13:56:26 | 只看該作者
18#
發(fā)表于 2025-3-24 14:57:18 | 只看該作者
19#
發(fā)表于 2025-3-24 19:50:31 | 只看該作者
https://doi.org/10.1007/978-1-4899-5409-1kinetic theory; Mathematica; mathematical method; mathematics
20#
發(fā)表于 2025-3-25 01:39:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普安县| 潼南县| 上杭县| 江永县| 金湖县| 无为县| 抚远县| 九江县| 岳西县| 东丽区| 阜阳市| 遵义市| 卢氏县| 德清县| 双江| 诏安县| 广丰县| 靖安县| 阿尔山市| 左云县| 明星| 辉南县| 鄂温| 南宫市| 电白县| 昌乐县| 永顺县| 仪陇县| 廉江市| 安图县| 黄浦区| 崇文区| 读书| 九江市| 科尔| 南木林县| 辽源市| 安平县| 寿阳县| 蛟河市| SHOW|