找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Methods in Image Processing and Inverse Problems; IPIP 2018, Beijing, Xue-Cheng Tai,Suhua Wei,Haiguang Liu Conference proceed

[復(fù)制鏈接]
樓主: ominous
31#
發(fā)表于 2025-3-26 21:57:59 | 只看該作者
Multi-modality Image Registration Models and Efficient Algorithms,l to generate a diffeomorphic transformation. The idea is illustrated by using a particular model based on reformulated normalized gradients of the images as the fidelity term and higher-order derivatives as the regularizer. By adding a control term motivated by quasi-conformal maps and Beltrami coe
32#
發(fā)表于 2025-3-27 02:51:56 | 只看該作者
Fast Algorithms for Surface Reconstruction from Point Cloud,y in [Zhao, Osher, Merriman and Kang, Comp Vision and Image Under, 80(3):295–319, 2000]. An approach using Semi-Implicit Method (SIM) improves the computational efficiency through relaxation on the time-step constraint. An approach based on Augmented Lagrangian Method (ALM) reduces the run-time via
33#
發(fā)表于 2025-3-27 07:44:37 | 只看該作者
A Total Variation Regularization Method for Inverse Source Problem with Uniform Noise,tate function which is corrupted by uniform noise. Under the framework of maximum a posteriori estimator, the problem can be converted into an optimization problem where the objective function is composed of an . norm and a total variation (TV) regularization term. By introducing an auxiliary variab
34#
發(fā)表于 2025-3-27 09:40:17 | 只看該作者
35#
發(fā)表于 2025-3-27 17:15:24 | 只看該作者
36#
發(fā)表于 2025-3-27 18:52:05 | 只看該作者
On the Optimal Proximal Parameter of an ADMM-like Splitting Method for Separable Convex Programmingfunctions. Its proximal parameter is required to be sufficiently large to theoretically ensure the convergence, despite that a smaller value of this parameter is preferred for numerical acceleration. Empirically, this method has been applied to solve various applications with relaxed restrictions on
37#
發(fā)表于 2025-3-28 01:26:09 | 只看該作者
A New Initialization Method for Neural Networks with Weight Sharing, is later generalized to Kaiming initialization by He, Zhang, Ren and Sun are now widely used. However, from experiments we find that networks with heavy weight sharing are difficulty to train even with the Xavier or the Kaiming initialization. We also notice that a certain simple network can be dec
38#
發(fā)表于 2025-3-28 04:39:34 | 只看該作者
The Shortest Path AMID 3-D Polyhedral Obstacles,ent algorithm to find the globally shortest path by solving stochastic differential equations (SDEs). The main idea is based on the simple structure of the shortest path, namely it consists of straight line segments connected by junctions on the edges of the polyhedral obstacles. Thus, finding the s
39#
發(fā)表于 2025-3-28 06:29:11 | 只看該作者
40#
發(fā)表于 2025-3-28 10:57:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 21:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
茶陵县| 永川市| 寻乌县| 康马县| 曲水县| 灵川县| 清流县| 广州市| 女性| 子长县| 桂阳县| 河源市| 揭东县| 兖州市| 剑川县| 象州县| 高陵县| 宜宾县| 嫩江县| 乌兰浩特市| 阜城县| 团风县| 北宁市| 焦作市| 宜兰县| 宁国市| 宜章县| 南开区| 北票市| 聊城市| 桂东县| 雅江县| 攀枝花市| 山西省| 乌鲁木齐市| 德化县| 江西省| 夏邑县| 旌德县| 浑源县| 白朗县|