找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Methods in Image Processing and Inverse Problems; IPIP 2018, Beijing, Xue-Cheng Tai,Suhua Wei,Haiguang Liu Conference proceed

[復(fù)制鏈接]
查看: 26573|回復(fù): 46
樓主
發(fā)表于 2025-3-21 17:42:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Mathematical Methods in Image Processing and Inverse Problems
副標(biāo)題IPIP 2018, Beijing,
編輯Xue-Cheng Tai,Suhua Wei,Haiguang Liu
視頻videohttp://file.papertrans.cn/627/626262/626262.mp4
概述Includes 11 original research papers by invited speakers at IPIP2018 in honor of Professor Raymond Chan.Deals with efficient algorithms and advanced mathematical modeling in imaging processing, data s
叢書名稱Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Mathematical Methods in Image Processing and Inverse Problems; IPIP 2018, Beijing,  Xue-Cheng Tai,Suhua Wei,Haiguang Liu Conference proceed
描述This book contains eleven original and survey scientific research articles arose from presentationsgiven by invited speakers at International Workshop on Image Processing and Inverse Problems, heldin Beijing Computational Science Research Center, Beijing, China, April 21–24, 2018. The book wasdedicated to Professor Raymond Chan on the occasion of his 60th birthday..The contents of the book cover topics including image reconstruction, image segmentation, imageregistration, inverse problems and so on. Deep learning, PDE, statistical theory based researchmethods and techniques were discussed. The state-of-the-art developments on mathematical analysis,advanced modeling, efficient algorithm and applications were presented. The collected papers in thisbook also give new research trends in deep learning and optimization for imaging science. It should bea good reference for researchers working on related problems, as well as for researchers working oncomputer vision and visualization, inverse problems, image processing and medical imaging..
出版日期Conference proceedings 2021
關(guān)鍵詞Low-Rank Matrix Reconstruction; Non-Convex Methods; Image Selective Segmentation Models; Variational In
版次1
doihttps://doi.org/10.1007/978-981-16-2701-9
isbn_softcover978-981-16-2703-3
isbn_ebook978-981-16-2701-9Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer Nature Singapore Pte Ltd. 2021
The information of publication is updating

書目名稱Mathematical Methods in Image Processing and Inverse Problems影響因子(影響力)




書目名稱Mathematical Methods in Image Processing and Inverse Problems影響因子(影響力)學(xué)科排名




書目名稱Mathematical Methods in Image Processing and Inverse Problems網(wǎng)絡(luò)公開度




書目名稱Mathematical Methods in Image Processing and Inverse Problems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Mathematical Methods in Image Processing and Inverse Problems被引頻次




書目名稱Mathematical Methods in Image Processing and Inverse Problems被引頻次學(xué)科排名




書目名稱Mathematical Methods in Image Processing and Inverse Problems年度引用




書目名稱Mathematical Methods in Image Processing and Inverse Problems年度引用學(xué)科排名




書目名稱Mathematical Methods in Image Processing and Inverse Problems讀者反饋




書目名稱Mathematical Methods in Image Processing and Inverse Problems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:55:04 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:55:41 | 只看該作者
地板
發(fā)表于 2025-3-22 06:05:43 | 只看該作者
5#
發(fā)表于 2025-3-22 11:14:09 | 只看該作者
6#
發(fā)表于 2025-3-22 13:14:52 | 只看該作者
A New Initialization Method for Neural Networks with Weight Sharing, initialization. In this paper we will propose a new initialization method which will increase training speed and training stability of neural networks with heavy weight sharing. We will also propose a simple yet efficient method to adjust learning rates layer by layer which is indispensable to our initialization.
7#
發(fā)表于 2025-3-22 20:24:18 | 只看該作者
The Shortest Path AMID 3-D Polyhedral Obstacles,We use the gradient descent method in conjunction with Intermittent Diffusion (ID), a global optimization strategy, to deduce SDEs for the globally optimal solution. Compared to the existing methods, our algorithm is efficient, easier to implement, and able to obtain the solution with any desirable precisions.
8#
發(fā)表于 2025-3-23 00:50:08 | 只看該作者
9#
發(fā)表于 2025-3-23 01:34:04 | 只看該作者
10#
發(fā)表于 2025-3-23 09:09:40 | 只看該作者
A Total Variation Regularization Method for Inverse Source Problem with Uniform Noise,le, the optimization problem is further converted into a minimax problem. Then first order primal-dual method is applied to find the saddle point of the minimax problem. Numerical examples are given to demonstrate that our proposed method outperforms the other testing methods.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 09:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
古田县| 滁州市| 开原市| 赫章县| 方城县| 勃利县| 大余县| 昌宁县| 内江市| 瑞金市| 海阳市| 新建县| 通州区| 当雄县| 蒙城县| 集贤县| 盐山县| 会宁县| 阳谷县| 三江| 个旧市| 夏津县| 乳源| 河曲县| 惠来县| 玉田县| 漯河市| 新和县| 荆州市| 米泉市| 咸宁市| 崇阳县| 江孜县| 大埔区| 盘锦市| 武宁县| 肥城市| 东源县| 大邑县| 兴业县| 德江县|