找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Methods for Engineering Applications; ICMASE 2021, Salaman Fatih Yilmaz,Araceli Queiruga-Dios,Jesús Martín Va Conference proce

[復(fù)制鏈接]
樓主: GERM
41#
發(fā)表于 2025-3-28 18:16:26 | 只看該作者
Sylvester Sums on the Frobenius Set in Arithmetic Progression, sum (.) and the weighed sum (.), where . forms arithmetic progressions. As applications, various other cases are also considered, including weighted sums, almost arithmetic sequences, arithmetic sequences with an additional term, and geometric-like sequences. Several examples illustrate and confirm our results.
42#
發(fā)表于 2025-3-28 20:52:35 | 只看該作者
,Generalized Riesz Potential Operator in?the Modified Morrey Spaces,r one ., for . and from . to the weak modified Morrey spaces ., for .. We get the boundedness of our two-operators . and . in the modified Morrey spaces . using the local estimate given in the Lemma ..
43#
發(fā)表于 2025-3-28 23:40:47 | 只看該作者
44#
發(fā)表于 2025-3-29 04:47:55 | 只看該作者
Jointly Type-II Censored Length-Biased Exponential Distributions, of the Bayesian estimations are provided. The simulation studies are performed to evaluate the performances of the estimation methods. Finally, a numerical example is used to illustrate the theoretical outcomes.
45#
發(fā)表于 2025-3-29 10:23:50 | 只看該作者
,On Wovenness of?,-Fusion Frames,ness of .-fusion frames. This article presents characterizations of weaving .-fusion frames. Paley-Wiener type perturbations and conditions on erasure of frame components are discussed to examine wovenness.
46#
發(fā)表于 2025-3-29 11:27:52 | 只看該作者
,PQ-Calculus of Fibonacci Divisors and?Method of Images in Planar Hydrodynamics,. We show that the even hierarchy of these functions determines the flow in the annular domain, bounded by concentric circles with the ratio of radiuses in powers of the Golden ratio. As an example, complex potential and velocity field for the set of point vortices with Golden proportion of images are calculated explicitly.
47#
發(fā)表于 2025-3-29 18:18:25 | 只看該作者
48#
發(fā)表于 2025-3-29 19:52:43 | 只看該作者
49#
發(fā)表于 2025-3-30 01:08:10 | 只看該作者
Palaniswamy Revathi,Kulandaivelu Chitirakala,Appachi Vadivelvancing our understanding of the mechanical properties of polycrystalline materials. This information is essential, both for testing the assumptions and approximations used in theoretical analyses designed to predict these properties from the properties of their constituent grains, as well as for us
50#
發(fā)表于 2025-3-30 05:32:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
运城市| 文安县| 东乌珠穆沁旗| 延长县| 鄂州市| 泸水县| 寿光市| 望江县| 和田县| 巴彦淖尔市| 馆陶县| 丰城市| 勐海县| 石屏县| 萨迦县| 新源县| 兰州市| 台北县| 桃园市| 自贡市| 荆门市| 长海县| 鄄城县| 玉环县| 盱眙县| 壶关县| 新营市| 灵宝市| 呼伦贝尔市| 翁源县| 宁化县| 清涧县| 南阳市| 宁陕县| 吴江市| 汉川市| 天全县| 徐汇区| 安丘市| 社旗县| 临夏县|