找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Logic; On Numbers, Sets, St Roman Kossak Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), under ex

[復(fù)制鏈接]
樓主: trace-mineral
41#
發(fā)表于 2025-3-28 15:27:49 | 只看該作者
Seeing the Number Structuresple answer to this question, and then we will proceed with a reconstruction of the arithmetic structures of the integers and the rational numbers in terms of first-order logic. The reconstruction is technical and rather tedious, but it serves as a good example of how some mathematical structures can
42#
發(fā)表于 2025-3-28 22:37:28 | 只看該作者
43#
發(fā)表于 2025-3-29 00:01:08 | 只看該作者
Set Theorylook at structures in general. The classical number structures fit the definition: a set with a set of relations on it. But what about other structures? Are they all sets? Can a set of relations always be associated with them? Clearly not. Not everything in this world is a set. I am a structured liv
44#
發(fā)表于 2025-3-29 03:14:30 | 只看該作者
Definable Elements and Constantsis chapter we will take a look at the smallest nonempty sets—those that have only one element. This a specialized topic, and it is technical, but it will give us an opportunity to see in detail what domains of mathematical structures are made of and in what sense they are “given to us.”
45#
發(fā)表于 2025-3-29 08:44:56 | 只看該作者
46#
發(fā)表于 2025-3-29 12:13:44 | 只看該作者
47#
發(fā)表于 2025-3-29 16:37:14 | 只看該作者
48#
發(fā)表于 2025-3-29 20:06:57 | 只看該作者
49#
發(fā)表于 2025-3-30 01:01:27 | 只看該作者
Tame vs. Wildd mysterious, the latter deceptively simple. As it turns out, as far as the model-theoretic properties are concerned, the roles are reversed, the former is tame while the latter quite wild, and those terms have precise meanings. In recent years, tameness has become a popular word in model theory. Ta
50#
發(fā)表于 2025-3-30 06:41:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彝良县| 崇左市| 南华县| 安吉县| 长泰县| 西青区| 长春市| 祥云县| 涿州市| 濮阳市| 赤壁市| 榆中县| 宝山区| 渝中区| 梅河口市| 罗山县| 西青区| 武义县| 邻水| 霍城县| 潞西市| 巴林右旗| 宁南县| 布尔津县| 禹城市| 迭部县| 峨边| 滦平县| 建宁县| 日照市| 永善县| 西宁市| 临夏市| 西吉县| 大化| 新乐市| 拉萨市| 梁平县| 米易县| 尤溪县| 武清区|