找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Logic; On Numbers, Sets, St Roman Kossak Textbook 20181st edition Springer International Publishing AG part of Springer Nature

[復(fù)制鏈接]
樓主: 和尚吃肉片
31#
發(fā)表于 2025-3-27 00:12:24 | 只看該作者
Suggestions for Further ReadingNeedles to say, there is a vast literature on model theory of first-order logic and its applications. Some references have already been given throughout the text. I will repeat some of them and will add other recommendations.
32#
發(fā)表于 2025-3-27 01:53:01 | 只看該作者
Roman KossakPresents an introduction to formal mathematical logic and set theory.Presents simple yet nontrivial results in modern model theory.Provides introductory remarks to all results, including a historical
33#
發(fā)表于 2025-3-27 08:56:33 | 只看該作者
34#
發(fā)表于 2025-3-27 11:55:49 | 只看該作者
https://doi.org/10.1007/978-3-319-97298-5first-order logic introduction; Abstract symmetries; Number system development; Set theory mathematics;
35#
發(fā)表于 2025-3-27 14:32:28 | 只看該作者
36#
發(fā)表于 2025-3-27 19:06:23 | 只看該作者
Mathematical Logic978-3-319-97298-5Series ISSN 2627-6046 Series E-ISSN 2627-6054
37#
發(fā)表于 2025-3-28 00:34:41 | 只看該作者
38#
發(fā)表于 2025-3-28 03:13:48 | 只看該作者
First-Order Logic is revealed later after one has a chance to see their utility. We will try to follow a different route. Before all formalities are introduced, in this chapter, we will take a detour to see examples of mathematical statements and some elements of the language that is used to express them.
39#
發(fā)表于 2025-3-28 08:53:15 | 只看該作者
Seeing the Number Structureserms of first-order logic. The reconstruction is technical and rather tedious, but it serves as a good example of how some mathematical structures can bee seen with the eyes of logic inside other structures. This chapter can be skipped on the first reading, but it should not be forgotten.
40#
發(fā)表于 2025-3-28 10:24:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁德市| 玉屏| 安仁县| 三门峡市| 富民县| 神农架林区| 多伦县| 色达县| 托克逊县| 财经| 正宁县| 定南县| 巨野县| 云安县| 廉江市| 宝清县| 安吉县| 德令哈市| 布拖县| 桓台县| 惠水县| 苏州市| 宾阳县| 威海市| 镇原县| 保山市| 诸城市| 汕尾市| 岑溪市| 仙游县| 钟祥市| 博乐市| 中超| 平遥县| 阜城县| 巴林左旗| 双辽市| 乐亭县| 台中县| 孝昌县| 都江堰市|