找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Logic; On Numbers, Sets, St Roman Kossak Textbook 20181st edition Springer International Publishing AG part of Springer Nature

[復(fù)制鏈接]
樓主: 和尚吃肉片
31#
發(fā)表于 2025-3-27 00:12:24 | 只看該作者
Suggestions for Further ReadingNeedles to say, there is a vast literature on model theory of first-order logic and its applications. Some references have already been given throughout the text. I will repeat some of them and will add other recommendations.
32#
發(fā)表于 2025-3-27 01:53:01 | 只看該作者
Roman KossakPresents an introduction to formal mathematical logic and set theory.Presents simple yet nontrivial results in modern model theory.Provides introductory remarks to all results, including a historical
33#
發(fā)表于 2025-3-27 08:56:33 | 只看該作者
34#
發(fā)表于 2025-3-27 11:55:49 | 只看該作者
https://doi.org/10.1007/978-3-319-97298-5first-order logic introduction; Abstract symmetries; Number system development; Set theory mathematics;
35#
發(fā)表于 2025-3-27 14:32:28 | 只看該作者
36#
發(fā)表于 2025-3-27 19:06:23 | 只看該作者
Mathematical Logic978-3-319-97298-5Series ISSN 2627-6046 Series E-ISSN 2627-6054
37#
發(fā)表于 2025-3-28 00:34:41 | 只看該作者
38#
發(fā)表于 2025-3-28 03:13:48 | 只看該作者
First-Order Logic is revealed later after one has a chance to see their utility. We will try to follow a different route. Before all formalities are introduced, in this chapter, we will take a detour to see examples of mathematical statements and some elements of the language that is used to express them.
39#
發(fā)表于 2025-3-28 08:53:15 | 只看該作者
Seeing the Number Structureserms of first-order logic. The reconstruction is technical and rather tedious, but it serves as a good example of how some mathematical structures can bee seen with the eyes of logic inside other structures. This chapter can be skipped on the first reading, but it should not be forgotten.
40#
發(fā)表于 2025-3-28 10:24:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
溧水县| 湖北省| 手游| 麻栗坡县| 旬邑县| 兴隆县| 廊坊市| 合水县| 静安区| 工布江达县| 滨海县| 澄迈县| 武川县| 仪征市| 腾冲县| 陆川县| 土默特右旗| 繁峙县| 金川县| 隆子县| 凤冈县| 册亨县| 轮台县| 托里县| 虎林市| 上饶市| 潜江市| 秦皇岛市| 湖南省| 平阳县| 彭山县| 东乡县| 曲阜市| 金堂县| 龙游县| 文登市| 沂源县| 祁东县| 鹿泉市| 综艺| 望城县|