找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Logic; On Numbers, Sets, St Roman Kossak Textbook 20181st edition Springer International Publishing AG part of Springer Nature

[復(fù)制鏈接]
樓主: 和尚吃肉片
31#
發(fā)表于 2025-3-27 00:12:24 | 只看該作者
Suggestions for Further ReadingNeedles to say, there is a vast literature on model theory of first-order logic and its applications. Some references have already been given throughout the text. I will repeat some of them and will add other recommendations.
32#
發(fā)表于 2025-3-27 01:53:01 | 只看該作者
Roman KossakPresents an introduction to formal mathematical logic and set theory.Presents simple yet nontrivial results in modern model theory.Provides introductory remarks to all results, including a historical
33#
發(fā)表于 2025-3-27 08:56:33 | 只看該作者
34#
發(fā)表于 2025-3-27 11:55:49 | 只看該作者
https://doi.org/10.1007/978-3-319-97298-5first-order logic introduction; Abstract symmetries; Number system development; Set theory mathematics;
35#
發(fā)表于 2025-3-27 14:32:28 | 只看該作者
36#
發(fā)表于 2025-3-27 19:06:23 | 只看該作者
Mathematical Logic978-3-319-97298-5Series ISSN 2627-6046 Series E-ISSN 2627-6054
37#
發(fā)表于 2025-3-28 00:34:41 | 只看該作者
38#
發(fā)表于 2025-3-28 03:13:48 | 只看該作者
First-Order Logic is revealed later after one has a chance to see their utility. We will try to follow a different route. Before all formalities are introduced, in this chapter, we will take a detour to see examples of mathematical statements and some elements of the language that is used to express them.
39#
發(fā)表于 2025-3-28 08:53:15 | 只看該作者
Seeing the Number Structureserms of first-order logic. The reconstruction is technical and rather tedious, but it serves as a good example of how some mathematical structures can bee seen with the eyes of logic inside other structures. This chapter can be skipped on the first reading, but it should not be forgotten.
40#
發(fā)表于 2025-3-28 10:24:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
日土县| 台中县| 岐山县| 甘谷县| 伊宁市| 西昌市| 香港 | 太保市| 通州区| 奎屯市| 平乐县| 霍州市| 阳城县| 昭苏县| 新密市| 吉林市| 赤峰市| 东乡族自治县| 定襄县| 康定县| 安溪县| 邵武市| 北京市| 钦州市| 图木舒克市| 阿瓦提县| 景德镇市| 曲松县| 松溪县| 绵竹市| 通州市| 普安县| 临猗县| 海兴县| 龙口市| 京山县| 清水县| 安顺市| 科技| 临潭县| 饶阳县|