找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Learning Models — Theory and Algorithms; Proceedings of a Con Ulrich Herkenrath,Dieter Kalin,Walter Vogel Conference proceedin

[復(fù)制鏈接]
樓主: Maudlin
31#
發(fā)表于 2025-3-26 23:34:11 | 只看該作者
32#
發(fā)表于 2025-3-27 02:27:19 | 只看該作者
Asymptotic Properties of Learning Models,te we consider a measurable mapping v of S × E into S and postulate that S.. = v(S., E..), n ≥ 0. Finally, we assume that the conditional probability distribution of E.. given E., S.,... depends only on the state S. and denote it Q(S.,.).
33#
發(fā)表于 2025-3-27 05:23:46 | 只看該作者
Bandit Problems with Random Discounting,discounted: the m. observation is weighted by α.. The α. are random variables. They may be dependent and their distributions unknown; in such a case one can learn about the character of the discounting as well as about the processes. The objective is to maximize the expected sum of the weighted obse
34#
發(fā)表于 2025-3-27 10:08:40 | 只看該作者
Learning Automaton for Finite Semi-Markov Decision Processes,parameter taking values in a subset [., .] of ?.. A controller modelled as a learning automaton updates sequentially the probabilities of generating decisions based on the observed decisions, states, and jump times. Convergence results are stated in the form of theorems and some examples are given.
35#
發(fā)表于 2025-3-27 16:18:22 | 只看該作者
36#
發(fā)表于 2025-3-27 20:33:03 | 只看該作者
37#
發(fā)表于 2025-3-27 22:03:16 | 只看該作者
Asymptotic Properties of Learning Models,r of the subject on trial . = 0,1,... is determined by his . S. (an indicator of the subject’s response tendencies) at the beginning of the trial. S. is a random variable taking on values in a measurable . (S,.). On trial n an . E.. occurs that results in a change of state. E.. is a randon variable
38#
發(fā)表于 2025-3-28 02:18:12 | 只看該作者
Uniform Bounds for a Dynamic Programming Model under Adaptive Control Using Exponentially Bounded Eted by T.. We give a bound on how much we loose compared with the maximum total reward if we use a plan that would be optimal if the estimated value T. was the true value of θ. We generalize a result of Rényi for finite Θ to a discretized infinite Θ to give a bound that holds independently of the tr
39#
發(fā)表于 2025-3-28 06:31:20 | 只看該作者
40#
發(fā)表于 2025-3-28 11:10:09 | 只看該作者
On a Class of Learning Algorithms with Symmetric Behavior under Success and Failure,and Mathematical Statistics [1] [2] [8] [11] [16]. In Mathematical Psychology the interest in learning stems from the desire to understand the observed animal learning and associated changes in their behavior. However, in Learning Automata Theory and Mathematical Statistics the aim is to build algor
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 21:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桃江县| 阜南县| 板桥市| 通辽市| 克山县| 广昌县| 城口县| 邓州市| 巴林右旗| 灌南县| 怀远县| 苏尼特左旗| 嘉荫县| 霍城县| 巫山县| 鹿泉市| 巫山县| 弋阳县| 靖江市| 民乐县| 芦山县| 北流市| 内江市| 车致| 东莞市| 黔西县| 郧西县| 新巴尔虎右旗| 黄大仙区| 红河县| 金昌市| 灯塔市| 古丈县| 阿合奇县| 东城区| 肥东县| 宣城市| 乌兰县| 调兵山市| 元谋县| 黔西县|