找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Learning Models — Theory and Algorithms; Proceedings of a Con Ulrich Herkenrath,Dieter Kalin,Walter Vogel Conference proceedin

[復(fù)制鏈接]
樓主: Maudlin
31#
發(fā)表于 2025-3-26 23:34:11 | 只看該作者
32#
發(fā)表于 2025-3-27 02:27:19 | 只看該作者
Asymptotic Properties of Learning Models,te we consider a measurable mapping v of S × E into S and postulate that S.. = v(S., E..), n ≥ 0. Finally, we assume that the conditional probability distribution of E.. given E., S.,... depends only on the state S. and denote it Q(S.,.).
33#
發(fā)表于 2025-3-27 05:23:46 | 只看該作者
Bandit Problems with Random Discounting,discounted: the m. observation is weighted by α.. The α. are random variables. They may be dependent and their distributions unknown; in such a case one can learn about the character of the discounting as well as about the processes. The objective is to maximize the expected sum of the weighted obse
34#
發(fā)表于 2025-3-27 10:08:40 | 只看該作者
Learning Automaton for Finite Semi-Markov Decision Processes,parameter taking values in a subset [., .] of ?.. A controller modelled as a learning automaton updates sequentially the probabilities of generating decisions based on the observed decisions, states, and jump times. Convergence results are stated in the form of theorems and some examples are given.
35#
發(fā)表于 2025-3-27 16:18:22 | 只看該作者
36#
發(fā)表于 2025-3-27 20:33:03 | 只看該作者
37#
發(fā)表于 2025-3-27 22:03:16 | 只看該作者
Asymptotic Properties of Learning Models,r of the subject on trial . = 0,1,... is determined by his . S. (an indicator of the subject’s response tendencies) at the beginning of the trial. S. is a random variable taking on values in a measurable . (S,.). On trial n an . E.. occurs that results in a change of state. E.. is a randon variable
38#
發(fā)表于 2025-3-28 02:18:12 | 只看該作者
Uniform Bounds for a Dynamic Programming Model under Adaptive Control Using Exponentially Bounded Eted by T.. We give a bound on how much we loose compared with the maximum total reward if we use a plan that would be optimal if the estimated value T. was the true value of θ. We generalize a result of Rényi for finite Θ to a discretized infinite Θ to give a bound that holds independently of the tr
39#
發(fā)表于 2025-3-28 06:31:20 | 只看該作者
40#
發(fā)表于 2025-3-28 11:10:09 | 只看該作者
On a Class of Learning Algorithms with Symmetric Behavior under Success and Failure,and Mathematical Statistics [1] [2] [8] [11] [16]. In Mathematical Psychology the interest in learning stems from the desire to understand the observed animal learning and associated changes in their behavior. However, in Learning Automata Theory and Mathematical Statistics the aim is to build algor
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 13:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海城市| 临夏县| 镶黄旗| 永定县| 锦屏县| 寿阳县| 米易县| 金昌市| 同心县| 西乌珠穆沁旗| 库伦旗| 寿光市| 惠安县| 霍邱县| 沈丘县| 聂荣县| 蓬莱市| 大宁县| 山丹县| 华宁县| 南雄市| 改则县| 钟山县| 出国| 泰安市| 金堂县| 临沧市| 天气| 容城县| 堆龙德庆县| 中超| 德昌县| 许昌县| 凤台县| 车险| 福鼎市| 白水县| 怀安县| 乌拉特前旗| 兰考县| 荣成市|