找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bi; Masanori Ohya,I. Volovich Book 2011

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 23:16:32 | 只看該作者
Locality and Entanglement,nclude the spatial dependence of entangled states which is crucial for this problem. We will present a new approach, suggested by Volovich, to the problem of quantum nonlocality which is based on the consideration of the spatially depending entangled states and which restores locality.
32#
發(fā)表于 2025-3-27 01:54:37 | 只看該作者
Information Dynamics and Adaptive Dynamics,icity. In 1991, the term . (ID) was proposed by Ohya with the aim of finding a common framework of treating such chaotic behaviors of different systems altogether. That is, ID is an attempt to synthesize dynamics of state change and complexity of the systems. The basic quantity in ID is called a .,
33#
發(fā)表于 2025-3-27 06:56:53 | 只看該作者
Mathematical Models of Quantum Computer, a quantum Turing machine. QTM is a quantum version of the classical Turing machine described in Chap.?.. QTM was introduced by Deutsch and has been extensively studied by Bernstein and Vasirani. The basic properties of the quantum Turing machine and quantum circuits will be described in this chapte
34#
發(fā)表于 2025-3-27 12:57:39 | 只看該作者
,Quantum Field Theory, Locality and?Entanglement,is new context. The relativistic corrections to the EPR–Bell type correlation functions for entangled states of the Dirac particles will be computed and it will be shown that the spatially depending correlations are consistent with locality.
35#
發(fā)表于 2025-3-27 17:25:29 | 只看該作者
36#
發(fā)表于 2025-3-27 20:35:40 | 只看該作者
37#
發(fā)表于 2025-3-28 01:05:50 | 只看該作者
38#
發(fā)表于 2025-3-28 03:03:09 | 只看該作者
39#
發(fā)表于 2025-3-28 06:30:37 | 只看該作者
40#
發(fā)表于 2025-3-28 12:24:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 17:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐业县| 方城县| 德阳市| 马龙县| 嘉义县| 襄樊市| 南岸区| 浦江县| 措美县| 花垣县| 正安县| 汪清县| 若尔盖县| 平昌县| 太仆寺旗| 永新县| 宁陕县| 邵阳市| 囊谦县| 茌平县| 清新县| 清涧县| 南皮县| 宁陵县| 南安市| 石首市| 东兰县| 宜川县| 伊吾县| 陇南市| 扎赉特旗| 同仁县| 三都| 驻马店市| 名山县| 门头沟区| 金川县| 绩溪县| 合山市| 西藏| 八宿县|