找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Foundations of Computer Science 2011; 36th International S Filip Murlak,Piotr Sankowski Conference proceedings 2011 Springer-V

[復(fù)制鏈接]
樓主: 忠誠
11#
發(fā)表于 2025-3-23 10:35:39 | 只看該作者
Verifying Proofs in Constant Depthanguages ranging from regular to .-complete. On the other hand, we show by combinatorial methods that even easy regular languages such as Exact-OR do not admit . proof systems. We also present a general construction of . proof systems for regular languages with strongly connected NFA’s.
12#
發(fā)表于 2025-3-23 16:44:24 | 只看該作者
The Complexity of the Cover Polynomials for Planar Graphs of Bounded Degrees for planar DAGs of bounded degree. For particular subclasses of planar graphs of bounded degree and for variants thereof, we also provide algorithms that allow for polynomial-time evaluation of the cover polynomials at certain new points by utilizing Valiant’s holographic framework.
13#
發(fā)表于 2025-3-23 21:47:43 | 只看該作者
14#
發(fā)表于 2025-3-24 01:05:40 | 只看該作者
15#
發(fā)表于 2025-3-24 04:37:58 | 只看該作者
16#
發(fā)表于 2025-3-24 09:31:20 | 只看該作者
17#
發(fā)表于 2025-3-24 13:25:13 | 只看該作者
18#
發(fā)表于 2025-3-24 17:56:13 | 只看該作者
19#
發(fā)表于 2025-3-24 21:40:59 | 只看該作者
Solving Analytic Differential Equations in Polynomial Time over Unbounded Domainsover . domains of ?. and ?., under the Computable Analysis setting. We show that the solution can be computed in polynomial time over its maximal interval of definition, provided it satisfies a very generous bound on its growth, and that the function admits an analytic extension to the complex plane.
20#
發(fā)表于 2025-3-25 01:57:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 20:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
垣曲县| 荔波县| 舟山市| 南昌县| 德江县| 房山区| 略阳县| 楚雄市| 平果县| 毕节市| 长岭县| 镇原县| 潜江市| 玉环县| 开平市| 铜山县| 广汉市| 宜黄县| 台中市| 北票市| 秭归县| 开鲁县| 武陟县| 巩留县| 衡东县| 盖州市| 信丰县| 寻甸| 庆元县| 营山县| 宁城县| 武夷山市| 临夏市| 河津市| 汪清县| 太仆寺旗| 黄冈市| 筠连县| 荣成市| 贵州省| 霍林郭勒市|