找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Foundations of Computer Science 2011; 36th International S Filip Murlak,Piotr Sankowski Conference proceedings 2011 Springer-V

[復(fù)制鏈接]
樓主: 忠誠
11#
發(fā)表于 2025-3-23 10:35:39 | 只看該作者
Verifying Proofs in Constant Depthanguages ranging from regular to .-complete. On the other hand, we show by combinatorial methods that even easy regular languages such as Exact-OR do not admit . proof systems. We also present a general construction of . proof systems for regular languages with strongly connected NFA’s.
12#
發(fā)表于 2025-3-23 16:44:24 | 只看該作者
The Complexity of the Cover Polynomials for Planar Graphs of Bounded Degrees for planar DAGs of bounded degree. For particular subclasses of planar graphs of bounded degree and for variants thereof, we also provide algorithms that allow for polynomial-time evaluation of the cover polynomials at certain new points by utilizing Valiant’s holographic framework.
13#
發(fā)表于 2025-3-23 21:47:43 | 只看該作者
14#
發(fā)表于 2025-3-24 01:05:40 | 只看該作者
15#
發(fā)表于 2025-3-24 04:37:58 | 只看該作者
16#
發(fā)表于 2025-3-24 09:31:20 | 只看該作者
17#
發(fā)表于 2025-3-24 13:25:13 | 只看該作者
18#
發(fā)表于 2025-3-24 17:56:13 | 只看該作者
19#
發(fā)表于 2025-3-24 21:40:59 | 只看該作者
Solving Analytic Differential Equations in Polynomial Time over Unbounded Domainsover . domains of ?. and ?., under the Computable Analysis setting. We show that the solution can be computed in polynomial time over its maximal interval of definition, provided it satisfies a very generous bound on its growth, and that the function admits an analytic extension to the complex plane.
20#
發(fā)表于 2025-3-25 01:57:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 22:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳高县| 龙南县| 南平市| 赤水市| 华坪县| 阿坝县| 旬阳县| 牟定县| 双辽市| 诏安县| 彰化县| 灵石县| 邵阳市| 滨海县| 体育| 永嘉县| 乡城县| 邻水| 黔东| 灌云县| 四会市| 建昌县| 竹溪县| 博乐市| 武清区| 仙居县| 九台市| 宝坻区| 迭部县| 宽城| 徐汇区| 沾化县| 南靖县| 东乌珠穆沁旗| 晋州市| 深水埗区| 吉安县| 邵阳县| 敖汉旗| 河池市| 大冶市|