找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Foundations for Data Analysis; Jeff M. Phillips Textbook 2021 Springer Nature Switzerland AG 2021 Data Analysis.Data Sciences

[復(fù)制鏈接]
查看: 20417|回復(fù): 44
樓主
發(fā)表于 2025-3-21 18:04:22 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Mathematical Foundations for Data Analysis
編輯Jeff M. Phillips
視頻videohttp://file.papertrans.cn/627/626105/626105.mp4
概述Provides accessible, simplified introduction to core mathematical language and concepts.Integrates examples of key concepts through geometric illustrations and Python coding.Addresses topics in locali
叢書名稱Springer Series in the Data Sciences
圖書封面Titlebook: Mathematical Foundations for Data Analysis;  Jeff M. Phillips Textbook 2021 Springer Nature Switzerland AG 2021 Data Analysis.Data Sciences
描述.This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra.? Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques..
出版日期Textbook 2021
關(guān)鍵詞Data Analysis; Data Sciences; Data Mining; Machine Learning; Probability; Neural Networks; Geometry of Dat
版次1
doihttps://doi.org/10.1007/978-3-030-62341-8
isbn_softcover978-3-030-62343-2
isbn_ebook978-3-030-62341-8Series ISSN 2365-5674 Series E-ISSN 2365-5682
issn_series 2365-5674
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Mathematical Foundations for Data Analysis影響因子(影響力)




書目名稱Mathematical Foundations for Data Analysis影響因子(影響力)學(xué)科排名




書目名稱Mathematical Foundations for Data Analysis網(wǎng)絡(luò)公開度




書目名稱Mathematical Foundations for Data Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Mathematical Foundations for Data Analysis被引頻次




書目名稱Mathematical Foundations for Data Analysis被引頻次學(xué)科排名




書目名稱Mathematical Foundations for Data Analysis年度引用




書目名稱Mathematical Foundations for Data Analysis年度引用學(xué)科排名




書目名稱Mathematical Foundations for Data Analysis讀者反饋




書目名稱Mathematical Foundations for Data Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:42:59 | 只看該作者
Convergence and Sampling,rk to think about how to aggregate more and more data to get better and better estimates. It will cover the . (CLT), Chernoff-Hoeffding bounds, Probably Approximately Correct (PAC) algorithms, as well as analysis of importance sampling techniques which improve the concentration of random samples.
板凳
發(fā)表于 2025-3-22 02:25:52 | 只看該作者
Distances and Nearest Neighbors,nd and the algorithms used. However, there are an enormous number of distances to choose from. We attempt to survey those most common within data analysis. This chapter also provides an overview of the most important properties of distances (e.g., is it a metric?) and how they are related to the dua
地板
發(fā)表于 2025-3-22 05:12:25 | 只看該作者
5#
發(fā)表于 2025-3-22 09:26:02 | 只看該作者
6#
發(fā)表于 2025-3-22 14:43:52 | 只看該作者
7#
發(fā)表于 2025-3-22 19:32:39 | 只看該作者
Clustering,re quite messy. And many techniques for clustering actually lack a mathematical formulation. We will initially focus on what is probably the cleanest and most used formulation: assignment-based clustering which includes .-center and the notorious .-means clustering. For background, we will begin wit
8#
發(fā)表于 2025-3-22 23:58:39 | 只看該作者
9#
發(fā)表于 2025-3-23 01:39:36 | 只看該作者
10#
發(fā)表于 2025-3-23 05:50:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 06:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴山县| 乐昌市| 通江县| 景宁| 辽宁省| 偏关县| 金平| 伊金霍洛旗| 斗六市| 田阳县| 罗源县| 北流市| 焦作市| 渭源县| 进贤县| 乐山市| 上犹县| 淮南市| 新乡县| 河津市| 微山县| 英吉沙县| 皋兰县| 灵川县| 青浦区| 连平县| 甘孜| 阿拉善左旗| 陆河县| 宜兰县| 奉贤区| 朝阳市| 怀化市| 汉沽区| 闵行区| 上杭县| 天水市| 鹿邑县| 长武县| 元朗区| 镇坪县|