找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Foundation of Turbulent Viscous Flows; Lectures given at th Marco Cannone,Tetsuro Miyakawa Book 2006 Springer-Verlag Berlin He

[復(fù)制鏈接]
查看: 53809|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:51:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Mathematical Foundation of Turbulent Viscous Flows
副標(biāo)題Lectures given at th
編輯Marco Cannone,Tetsuro Miyakawa
視頻videohttp://file.papertrans.cn/627/626102/626102.mp4
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Mathematical Foundation of Turbulent Viscous Flows; Lectures given at th Marco Cannone,Tetsuro Miyakawa Book 2006 Springer-Verlag Berlin He
描述.Constantin .presents the Euler equations of ideal incompressible fluids and the blow-up problem for the Navier-Stokes equations of viscous fluids, describing major mathematical questions of turbulence theory. These are connected to the Caffarelli-Kohn-Nirenberg theory of singularities for the incompressible Navier-Stokes equations, explained in .Gallavotti.‘s lectures. .Kazhikhov. introduces the theory of strong approximation of weak limits via the method of averaging, applied to Navier-Stokes equations. .Y. Meyer. focuses on nonlinear evolution equations and related unexpected cancellation properties, either imposed on the initial condition, or satisfied by the solution itself, localized in space or in time variable. .Ukai. discusses the asymptotic analysis theory of fluid equations, the Cauchy-Kovalevskaya technique for the Boltzmann-Grad limit of the Newtonian equation, the multi-scale analysis, giving compressible and incompressible limits of the Boltzmann equation, and the analysis of their initial layers..
出版日期Book 2006
關(guān)鍵詞Boltzmann equation; Fourier analysis; Navier-Stokes equation; fluid mechanics; partial differential equa
版次1
doihttps://doi.org/10.1007/b11545989
isbn_softcover978-3-540-28586-1
isbn_ebook978-3-540-32454-6Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2006
The information of publication is updating

書目名稱Mathematical Foundation of Turbulent Viscous Flows影響因子(影響力)




書目名稱Mathematical Foundation of Turbulent Viscous Flows影響因子(影響力)學(xué)科排名




書目名稱Mathematical Foundation of Turbulent Viscous Flows網(wǎng)絡(luò)公開度




書目名稱Mathematical Foundation of Turbulent Viscous Flows網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Mathematical Foundation of Turbulent Viscous Flows被引頻次




書目名稱Mathematical Foundation of Turbulent Viscous Flows被引頻次學(xué)科排名




書目名稱Mathematical Foundation of Turbulent Viscous Flows年度引用




書目名稱Mathematical Foundation of Turbulent Viscous Flows年度引用學(xué)科排名




書目名稱Mathematical Foundation of Turbulent Viscous Flows讀者反饋




書目名稱Mathematical Foundation of Turbulent Viscous Flows讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:38:42 | 只看該作者
Peter Constantin immune system within the skin.Written by leading experts in.Much anecdotal information has suggested an influence of psychology and the nervous system on immunity within the skin and the expression of inflammatory skin disorders. Recent years have seen an explosion of knowledge providing a scientif
板凳
發(fā)表于 2025-3-22 02:14:22 | 只看該作者
Giovanni Gallavotti immune system within the skin.Written by leading experts in.Much anecdotal information has suggested an influence of psychology and the nervous system on immunity within the skin and the expression of inflammatory skin disorders. Recent years have seen an explosion of knowledge providing a scientif
地板
發(fā)表于 2025-3-22 08:17:26 | 只看該作者
Alexandre V. Kazhikhov immune system within the skin.Written by leading experts in.Much anecdotal information has suggested an influence of psychology and the nervous system on immunity within the skin and the expression of inflammatory skin disorders. Recent years have seen an explosion of knowledge providing a scientif
5#
發(fā)表于 2025-3-22 12:40:11 | 只看該作者
6#
發(fā)表于 2025-3-22 16:32:52 | 只看該作者
7#
發(fā)表于 2025-3-22 21:03:59 | 只看該作者
8#
發(fā)表于 2025-3-22 22:41:48 | 只看該作者
9#
發(fā)表于 2025-3-23 03:32:16 | 只看該作者
CKN Theory of Singularities of Weak Solutions of the Navier-Stokes Equations, geometrical setting in which the fluid is enclosed in a container Ω. with periodic boundary conditions and side size L. The theory is due to the work of Scheffer, Caffarelli, Kohn, Nirenberg and is called here CKN-theory as it is inspired by the work of the last three authors which considerably imp
10#
發(fā)表于 2025-3-23 08:43:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 03:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临江市| 唐山市| 荥经县| 汝州市| 萨迦县| 青神县| 惠水县| 马公市| 怀柔区| 临武县| 安新县| 逊克县| 天等县| 阳西县| 邵阳市| 集安市| 洪雅县| 霍城县| 华宁县| 江安县| 新田县| 麻栗坡县| 平遥县| 顺昌县| 濮阳市| 化州市| 习水县| 泾川县| 科技| 石景山区| 赫章县| 晋中市| 临夏市| 来宾市| 新野县| 扎鲁特旗| 景宁| 彝良县| 松原市| 阳东县| 苗栗市|