找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Foundation of Quantum Mechanics; K. R. Parthasarathy Book 2005 Hindustan Book Agency (India) 2005

[復制鏈接]
樓主: 黑暗社會
11#
發(fā)表于 2025-3-23 10:53:06 | 只看該作者
Multipliers on Locally Compact Groups,ective unitary antiunitary (p.u.a.) representation of a group .. Associated with any such representation there is a decomposition of . = . ∪ . and a multiplier . satisfying (1.4.4). We shall now investigate the properties of . when . = ? and . is a locally compact second countable metric group.
12#
發(fā)表于 2025-3-23 15:13:17 | 只看該作者
13#
發(fā)表于 2025-3-23 18:16:32 | 只看該作者
the Delhi Centre of the Indian Statistical Institute in order to initiate active research in the emerging field of quantum probability. The material in the first chapter is included in the author‘s book "An Introduction to Quantum Stochastic Calculus" published by Birkhauser Verlag in 1992 and the p
14#
發(fā)表于 2025-3-24 01:06:32 | 只看該作者
Systems with a Configuration Under a Group Action,on a Hilbert space .. Then the event ‘. ? .’ can be identified with an element .(.) ? .. Then the existence of a position observable is equivalent to the fact that the map . → .(.) from . to . is a spectral measure.
15#
發(fā)表于 2025-3-24 02:33:54 | 只看該作者
16#
發(fā)表于 2025-3-24 08:23:50 | 只看該作者
17#
發(fā)表于 2025-3-24 11:20:40 | 只看該作者
18#
發(fā)表于 2025-3-24 16:33:52 | 只看該作者
19#
發(fā)表于 2025-3-24 19:53:05 | 只看該作者
Multipliers on Locally Compact Groups,ective unitary antiunitary (p.u.a.) representation of a group .. Associated with any such representation there is a decomposition of . = . ∪ . and a multiplier . satisfying (1.4.4). We shall now investigate the properties of . when . = ? and . is a locally compact second countable metric group.
20#
發(fā)表于 2025-3-25 02:55:06 | 只看該作者
The Basic Observables of a Quantum Mechanical System,rgy etc., through an investigation of the projective unitary antiunitary (p.u.a.) representations of the groups under which the description of the quantum mechanical system is assumed to be covariant. (See sections 1.4 and 1.5). Special emphasis is laid on the Galilean group and the Poincare group.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 07:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
乌拉特前旗| 星子县| 天柱县| 罗田县| 博爱县| 大连市| 台前县| 蓬安县| 平和县| 嘉峪关市| 明星| 山西省| 玉环县| 广饶县| 诏安县| 晋城| 客服| 习水县| 永丰县| 内丘县| 九龙县| 龙南县| 滦平县| 东兰县| 涞源县| 吴江市| 赤水市| 昌吉市| 当阳市| 尉犁县| 上虞市| 临洮县| 保德县| 东方市| 墨玉县| 天台县| 专栏| 美姑县| 堆龙德庆县| 澄江县| 双流县|