找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Essays in honor of Gian-Carlo Rota; Bruce E. Sagan,Richard P. Stanley Book 1998 Birkh?user 1998 Hilbert space.Hypergeometric

[復(fù)制鏈接]
樓主: 棕櫚等
31#
發(fā)表于 2025-3-26 22:57:40 | 只看該作者
Mathematical Essays in honor of Gian-Carlo Rota978-1-4612-4108-9Series ISSN 0743-1643 Series E-ISSN 2296-505X
32#
發(fā)表于 2025-3-27 02:35:28 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/m/image/626084.jpg
33#
發(fā)表于 2025-3-27 06:07:12 | 只看該作者
34#
發(fā)表于 2025-3-27 10:49:04 | 只看該作者
35#
發(fā)表于 2025-3-27 16:33:44 | 只看該作者
Classification of Trivectors in 6-D Space, in all infinite fields of characteristics other than two or three). In particular, we prove that there is only one invariant. Our work leads to a notable new conjecture on the covariants of supersymmetric tensors.
36#
發(fā)表于 2025-3-27 19:17:38 | 只看該作者
Parameter Augmentation for Basic Hypergeometric Series, I,elop a method of deriving hypergeometric identities by parameter augmentation, which means that a hypergeometric identity with multiple parameters may be derived from its special case obtained by reducing some parameters to zero. Many classical results on basic hypergeometric series easily fall into this framework.
37#
發(fā)表于 2025-3-27 23:09:15 | 只看該作者
Lattice Walks and Primary Decomposition,statistics, and operations research. We begin this introduction with the general formulation. Then we give the simplest interesting example of our theory, followed by a statistical example similar to that which provided our original motivation. Later on we study the primary decompositions corresponding to some natural combinatorial problems.
38#
發(fā)表于 2025-3-28 04:31:33 | 只看該作者
39#
發(fā)表于 2025-3-28 07:32:29 | 只看該作者
40#
發(fā)表于 2025-3-28 10:32:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉义县| 马鞍山市| 兴业县| 灯塔市| 滦平县| 固安县| 聂荣县| 巨野县| 徐州市| 张北县| 聂拉木县| 青浦区| 扶绥县| 磴口县| 平顶山市| 祁连县| 永年县| 依安县| 梅州市| 新竹市| 湖北省| 蓬溪县| 洛扎县| 合作市| 秀山| 康保县| 天津市| 铅山县| 龙川县| 南岸区| 贵州省| 剑阁县| 邛崃市| 达孜县| 合阳县| 特克斯县| 巴彦淖尔市| 德安县| 盘锦市| 静宁县| 阿拉尔市|