找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Control Theory for Stochastic Partial Differential Equations; Qi Lü,Xu Zhang Book 2021 Springer Nature Switzerland AG 2021 st

[復(fù)制鏈接]
樓主: fungus
21#
發(fā)表于 2025-3-25 05:24:43 | 只看該作者
Exact Controllability for Stochastic Transport Equations,In this chapter, we are concerned with the exact boundary controllability for stochastic transport equations. By the duality argument, the controllabilityproblem is reduced to a suitable observability estimate for backward stochastic transport equations, and we employ a stochastic version of global Carlemanestimate to derive such an estimate.
22#
發(fā)表于 2025-3-25 09:07:49 | 只看該作者
23#
發(fā)表于 2025-3-25 14:48:45 | 只看該作者
Some Preliminaries in Stochastic Calculus,is book. Especially, we collect the most relevant preliminaries for studying control problems in stochastic distributed parameter systems. Also, we will provide some unified notations (which may differ from one paper/book to another) to be used in later chapters.
24#
發(fā)表于 2025-3-25 17:55:22 | 只看該作者
Backward Stochastic Evolution Equations, of control problems for stochastic distributed parameter systems. In the case of natural filtration, by means of the Martingale Representation Theorem, these equations are proved to be well-posed in the sense of mild solutions; while for the general filtration, using our stochastic transposition method, we also establish their well-posedness.
25#
發(fā)表于 2025-3-25 22:20:33 | 只看該作者
26#
發(fā)表于 2025-3-26 02:49:36 | 只看該作者
,Exact Controllability for Stochastic Schr?dinger Equations,control and the other is an internal control acting everywhere in the diffusion term. Based on the duality argument, we solve this controllability problemby employing the global Carleman estimate to derive a suitable observability estimate for the dual equation.
27#
發(fā)表于 2025-3-26 07:30:21 | 只看該作者
https://doi.org/10.1007/978-3-030-82331-3stochastic evolution equation; control theory; controllability; observability; optimal control; global Ca
28#
發(fā)表于 2025-3-26 09:56:30 | 只看該作者
978-3-030-82333-7Springer Nature Switzerland AG 2021
29#
發(fā)表于 2025-3-26 12:37:25 | 只看該作者
Mathematical Control Theory for Stochastic Partial Differential Equations978-3-030-82331-3Series ISSN 2199-3130 Series E-ISSN 2199-3149
30#
發(fā)表于 2025-3-26 18:01:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 20:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彝良县| 无为县| 新安县| 晋州市| 武乡县| 横山县| 潞西市| 肇源县| 云浮市| 桦南县| 马山县| 泽普县| 囊谦县| 拜泉县| 广水市| 铁岭县| 云梦县| 鄯善县| 明光市| 平昌县| 桐梓县| 若羌县| 东丰县| 沅陵县| 嘉黎县| 民勤县| 广河县| 大城县| 普兰店市| 沾化县| 砚山县| 贵阳市| 马山县| 顺昌县| 谷城县| 新安县| 清徐县| 昌江| 皮山县| 色达县| 杨浦区|