找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Control Theory I; Nonlinear and Hybrid M. Kanat Camlibel,A. Agung Julius,Jacquelien M.A. Conference proceedings 2015 Springer

[復制鏈接]
樓主: TOUT
21#
發(fā)表于 2025-3-25 07:05:56 | 只看該作者
22#
發(fā)表于 2025-3-25 09:34:12 | 只看該作者
23#
發(fā)表于 2025-3-25 14:55:27 | 只看該作者
24#
發(fā)表于 2025-3-25 19:46:08 | 只看該作者
Yu Kawano,Jacquelien M.A. Scherpents and outputs. Correspondingly, in this paper only mechanisms of locomotor control in vertebrates are considered. In particular, similarity of mechanisms employed by the axial nervous system to control both swimming of animals without appendages and terrestrial locomotion of tetrapods is discussed.
25#
發(fā)表于 2025-3-25 22:52:33 | 只看該作者
26#
發(fā)表于 2025-3-26 01:08:29 | 只看該作者
27#
發(fā)表于 2025-3-26 05:48:54 | 只看該作者
28#
發(fā)表于 2025-3-26 09:09:39 | 只看該作者
Nonlinear Controller Design Based on Invariant Manifold Theory,The role of invariant manifold in nonlinear control theory is reviewed. First, stable, center-stable and center manifold algorithms to compute flows on these manifolds are presented. Next, application results of the computational methods are illustrated for optimal stabilization, optimal output regulation and periodic orbit design problems.
29#
發(fā)表于 2025-3-26 13:22:30 | 只看該作者
Examples on Stability for Infinite-Dimensional Systems,does not imply asymptotic stability, even not for linear systems. Second, we show that to conclude (local) exponential stability from the linearization, care must be taken how the linearization is obtained.
30#
發(fā)表于 2025-3-26 18:58:17 | 只看該作者
Model Reduction by Generalized Differential Balancing,e generalize concepts of differential controllability and observability functions, then use them for model reduction. We show some stability properties are preserved under the model reduction and estimate the error bound by the model reduction.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 13:00
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
铜川市| 白河县| 荥阳市| 沧州市| 平利县| 蓬溪县| 河源市| 婺源县| 益阳市| 岗巴县| 白玉县| 鹰潭市| 彭州市| 蓬莱市| 丹东市| 中江县| 邹平县| 彰武县| 汝阳县| 紫阳县| 平顺县| 绵阳市| 玉树县| 屯门区| 民县| 绿春县| 周宁县| 博客| 洛阳市| 都匀市| 宣汉县| 轮台县| 鹤岗市| 禄丰县| 香格里拉县| 无极县| 大田县| 从化市| 乳源| 鄯善县| 满洲里市|