找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Control Theory I; Nonlinear and Hybrid M. Kanat Camlibel,A. Agung Julius,Jacquelien M.A. Conference proceedings 2015 Springer

[復制鏈接]
樓主: TOUT
21#
發(fā)表于 2025-3-25 07:05:56 | 只看該作者
22#
發(fā)表于 2025-3-25 09:34:12 | 只看該作者
23#
發(fā)表于 2025-3-25 14:55:27 | 只看該作者
24#
發(fā)表于 2025-3-25 19:46:08 | 只看該作者
Yu Kawano,Jacquelien M.A. Scherpents and outputs. Correspondingly, in this paper only mechanisms of locomotor control in vertebrates are considered. In particular, similarity of mechanisms employed by the axial nervous system to control both swimming of animals without appendages and terrestrial locomotion of tetrapods is discussed.
25#
發(fā)表于 2025-3-25 22:52:33 | 只看該作者
26#
發(fā)表于 2025-3-26 01:08:29 | 只看該作者
27#
發(fā)表于 2025-3-26 05:48:54 | 只看該作者
28#
發(fā)表于 2025-3-26 09:09:39 | 只看該作者
Nonlinear Controller Design Based on Invariant Manifold Theory,The role of invariant manifold in nonlinear control theory is reviewed. First, stable, center-stable and center manifold algorithms to compute flows on these manifolds are presented. Next, application results of the computational methods are illustrated for optimal stabilization, optimal output regulation and periodic orbit design problems.
29#
發(fā)表于 2025-3-26 13:22:30 | 只看該作者
Examples on Stability for Infinite-Dimensional Systems,does not imply asymptotic stability, even not for linear systems. Second, we show that to conclude (local) exponential stability from the linearization, care must be taken how the linearization is obtained.
30#
發(fā)表于 2025-3-26 18:58:17 | 只看該作者
Model Reduction by Generalized Differential Balancing,e generalize concepts of differential controllability and observability functions, then use them for model reduction. We show some stability properties are preserved under the model reduction and estimate the error bound by the model reduction.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 13:00
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
依安县| 五家渠市| 岳阳县| 额济纳旗| 鸡西市| 开江县| 黑龙江省| 德格县| 宾阳县| 民乐县| 佛坪县| 滨州市| 丰台区| 乡城县| 东阳市| 崇明县| 会宁县| 雷山县| 通化县| 手游| 四川省| 怀集县| 肇东市| 灵石县| 许昌县| 高台县| 丰镇市| 林州市| 合江县| 彭州市| 延安市| 方山县| 安远县| 武山县| 贡觉县| 息烽县| 咸宁市| 松滋市| 东丰县| 阳原县| 东乡族自治县|