找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Control Theory I; Nonlinear and Hybrid M. Kanat Camlibel,A. Agung Julius,Jacquelien M.A. Conference proceedings 2015 Springer

[復制鏈接]
樓主: TOUT
21#
發(fā)表于 2025-3-25 07:05:56 | 只看該作者
22#
發(fā)表于 2025-3-25 09:34:12 | 只看該作者
23#
發(fā)表于 2025-3-25 14:55:27 | 只看該作者
24#
發(fā)表于 2025-3-25 19:46:08 | 只看該作者
Yu Kawano,Jacquelien M.A. Scherpents and outputs. Correspondingly, in this paper only mechanisms of locomotor control in vertebrates are considered. In particular, similarity of mechanisms employed by the axial nervous system to control both swimming of animals without appendages and terrestrial locomotion of tetrapods is discussed.
25#
發(fā)表于 2025-3-25 22:52:33 | 只看該作者
26#
發(fā)表于 2025-3-26 01:08:29 | 只看該作者
27#
發(fā)表于 2025-3-26 05:48:54 | 只看該作者
28#
發(fā)表于 2025-3-26 09:09:39 | 只看該作者
Nonlinear Controller Design Based on Invariant Manifold Theory,The role of invariant manifold in nonlinear control theory is reviewed. First, stable, center-stable and center manifold algorithms to compute flows on these manifolds are presented. Next, application results of the computational methods are illustrated for optimal stabilization, optimal output regulation and periodic orbit design problems.
29#
發(fā)表于 2025-3-26 13:22:30 | 只看該作者
Examples on Stability for Infinite-Dimensional Systems,does not imply asymptotic stability, even not for linear systems. Second, we show that to conclude (local) exponential stability from the linearization, care must be taken how the linearization is obtained.
30#
發(fā)表于 2025-3-26 18:58:17 | 只看該作者
Model Reduction by Generalized Differential Balancing,e generalize concepts of differential controllability and observability functions, then use them for model reduction. We show some stability properties are preserved under the model reduction and estimate the error bound by the model reduction.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 13:00
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
江永县| 湛江市| 太仆寺旗| 荃湾区| 闵行区| 华安县| 阳原县| 东乡族自治县| 福贡县| 栾城县| 浮梁县| 和硕县| 龙门县| 峨山| 南充市| 靖州| 砀山县| 上高县| 湛江市| 沙河市| 枣强县| 公安县| 介休市| 宜都市| 云梦县| 漳州市| 东方市| 隆尧县| 德令哈市| 锡林郭勒盟| 雷州市| 青川县| 平塘县| 福泉市| 山丹县| 亚东县| 夏河县| 弥渡县| 兴义市| 兴宁市| 太湖县|