找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Control Theory I; Nonlinear and Hybrid M. Kanat Camlibel,A. Agung Julius,Jacquelien M.A. Conference proceedings 2015 Springer

[復(fù)制鏈接]
樓主: TOUT
21#
發(fā)表于 2025-3-25 07:05:56 | 只看該作者
22#
發(fā)表于 2025-3-25 09:34:12 | 只看該作者
23#
發(fā)表于 2025-3-25 14:55:27 | 只看該作者
24#
發(fā)表于 2025-3-25 19:46:08 | 只看該作者
Yu Kawano,Jacquelien M.A. Scherpents and outputs. Correspondingly, in this paper only mechanisms of locomotor control in vertebrates are considered. In particular, similarity of mechanisms employed by the axial nervous system to control both swimming of animals without appendages and terrestrial locomotion of tetrapods is discussed.
25#
發(fā)表于 2025-3-25 22:52:33 | 只看該作者
26#
發(fā)表于 2025-3-26 01:08:29 | 只看該作者
27#
發(fā)表于 2025-3-26 05:48:54 | 只看該作者
28#
發(fā)表于 2025-3-26 09:09:39 | 只看該作者
Nonlinear Controller Design Based on Invariant Manifold Theory,The role of invariant manifold in nonlinear control theory is reviewed. First, stable, center-stable and center manifold algorithms to compute flows on these manifolds are presented. Next, application results of the computational methods are illustrated for optimal stabilization, optimal output regulation and periodic orbit design problems.
29#
發(fā)表于 2025-3-26 13:22:30 | 只看該作者
Examples on Stability for Infinite-Dimensional Systems,does not imply asymptotic stability, even not for linear systems. Second, we show that to conclude (local) exponential stability from the linearization, care must be taken how the linearization is obtained.
30#
發(fā)表于 2025-3-26 18:58:17 | 只看該作者
Model Reduction by Generalized Differential Balancing,e generalize concepts of differential controllability and observability functions, then use them for model reduction. We show some stability properties are preserved under the model reduction and estimate the error bound by the model reduction.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 17:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大渡口区| 溧阳市| 时尚| 利辛县| 商丘市| 望城县| 来凤县| 松江区| 新晃| 南康市| 榆社县| 平昌县| 天台县| 仲巴县| 诸暨市| 西乡县| 明光市| 长宁区| 株洲县| 湖南省| 靖州| 栾城县| 盘山县| 泰州市| 福建省| 屏南县| 临朐县| 浮梁县| 五大连池市| 额敏县| 松桃| 洛南县| 四川省| 上蔡县| 南乐县| 凌海市| 陇西县| 定边县| 穆棱市| 建水县| 浮梁县|