找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Control Theory; An Introduction Jerzy Zabczyk Textbook 2020Latest edition Springer Nature Switzerland AG 2020 Mathematical Con

[復制鏈接]
樓主: VEER
31#
發(fā)表于 2025-3-27 00:50:26 | 只看該作者
Controllability their adjoint operators. The abstract results lead to specific descriptions of approximately controllable and exactly controllable systems which are applicable to parabolic and hyperbolic equations. Formulae for controls which transfer one state to another are given as well.
32#
發(fā)表于 2025-3-27 01:47:11 | 只看該作者
Stability and stabilizabilityIn this chapter stable linear systems are characterized in terms of associated characteristic polynomials and Lyapunov equations. A proof of the Routh theorem on stable polynomials is given as well as a complete description of completely stabilizable systems. Luenberger’s observer is introduced and used to illustrate the concept of detectability.
33#
發(fā)表于 2025-3-27 06:50:35 | 只看該作者
34#
發(fā)表于 2025-3-27 09:49:42 | 只看該作者
35#
發(fā)表于 2025-3-27 17:16:13 | 只看該作者
Realization theoryThis chapter is devoted to the input–output map generated by a linear control system. The input–output map is characterized in terms of the impulse response function and the transfer function.
36#
發(fā)表于 2025-3-27 20:00:10 | 只看該作者
37#
發(fā)表于 2025-3-27 22:43:29 | 只看該作者
Stability and stabilizabilityThree types of stability and stabilizability are studied: exponential, asymptotic and Lyapunov. Discussions are based on linearization and Lyapunov’s function approaches. When analysing a relationship between controllability and stabilizability topological methods are used.
38#
發(fā)表于 2025-3-28 04:55:53 | 只看該作者
39#
發(fā)表于 2025-3-28 07:48:28 | 只看該作者
40#
發(fā)表于 2025-3-28 13:40:30 | 只看該作者
Dynamic programming for impulse control???The dynamic programming approach is applied to impulse control problems. The existence of optimal impulse strategy is deduced from general results on fixed points for monotonic and concave transformations.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 20:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
连江县| 安顺市| 崇仁县| 新疆| 桃园市| 年辖:市辖区| 勃利县| 甘谷县| 天水市| 耒阳市| 厦门市| 澜沧| 徐水县| 石棉县| 凤城市| 高雄市| 桑植县| 剑河县| 仁布县| 易门县| 托里县| 桦甸市| 东乡县| 庄浪县| 博乐市| 伊吾县| 蛟河市| 石嘴山市| 托里县| 固始县| 格尔木市| 保山市| 若羌县| 沅陵县| 公安县| 迁西县| 靖远县| 古丈县| 临泽县| 巴青县| 太湖县|