找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Biology; James D. Murray Textbook 19932nd edition Springer-Verlag Berlin Heidelberg 1993 biomathematics.kinetics.mathematical

[復(fù)制鏈接]
查看: 11572|回復(fù): 66
樓主
發(fā)表于 2025-3-21 17:53:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Mathematical Biology
編輯James D. Murray
視頻videohttp://file.papertrans.cn/627/626030/626030.mp4
叢書(shū)名稱Biomathematics
圖書(shū)封面Titlebook: Mathematical Biology;  James D. Murray Textbook 19932nd edition Springer-Verlag Berlin Heidelberg 1993 biomathematics.kinetics.mathematical
描述Mathematics has always benefited from its involvement with developing sciences. Each successive interaction revitalises and enhances the field. Biomedical science is clearly the premier science of the foreseeable future. For the continuing health of their subject mathematicians must become involved with biology. With the example of how mathematics has benefited from and influenced physics, it is clear that if mathematicians do not become involved in the biosciences they will simply not be a part of what are likely to be the most important and exciting scientific discoveries of all time. Mathematical biology is a fast growing, well recognised, albeit not clearly defined, subject and is, to my mind, the most exciting modern application of mathematics. The increasing use of mathematics in biology is inevitable as biol- ogy becomes more quantitative. The complexity of the biological sciences makes interdisciplinary involvement essential. For the mathematician, biology opens up new and exciting branches while for the biologist mathematical modelling offers another research tool commmensurate with a new powerful laboratory technique but only if used appropriately and its limitations reco
出版日期Textbook 19932nd edition
關(guān)鍵詞biomathematics; kinetics; mathematical biology; mathematics; population biology
版次2
doihttps://doi.org/10.1007/978-3-662-08542-4
isbn_ebook978-3-662-08542-4Series ISSN 0067-8821 Series E-ISSN 2197-4160
issn_series 0067-8821
copyrightSpringer-Verlag Berlin Heidelberg 1993
The information of publication is updating

書(shū)目名稱Mathematical Biology影響因子(影響力)




書(shū)目名稱Mathematical Biology影響因子(影響力)學(xué)科排名




書(shū)目名稱Mathematical Biology網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Mathematical Biology網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Mathematical Biology被引頻次




書(shū)目名稱Mathematical Biology被引頻次學(xué)科排名




書(shū)目名稱Mathematical Biology年度引用




書(shū)目名稱Mathematical Biology年度引用學(xué)科排名




書(shū)目名稱Mathematical Biology讀者反饋




書(shū)目名稱Mathematical Biology讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:42:00 | 只看該作者
Continuous Models for Interacting Populations,ere are three main types of interaction, (i) If the growth rate of one population is decreased and the other increased the populations are in a . situation, (ii) If the growth rate of each population is decreased then it is .. (iii) If each population’s growth rate is enhanced then it is called . or ..
板凳
發(fā)表于 2025-3-22 02:05:45 | 只看該作者
Mechanical Models for Generating Pattern and Form in Development,o how pattern is laid down and how the embryonic form might be created. Although genes of course play a crucial role in the control of pattern formation, genetics says nothing about the actual . involved nor how the vast range of pattern and form that we see evolves from a homogeneous mass of dividing cells.
地板
發(fā)表于 2025-3-22 07:12:18 | 只看該作者
Textbook 19932nd editionical science is clearly the premier science of the foreseeable future. For the continuing health of their subject mathematicians must become involved with biology. With the example of how mathematics has benefited from and influenced physics, it is clear that if mathematicians do not become involved
5#
發(fā)表于 2025-3-22 08:51:49 | 只看該作者
6#
發(fā)表于 2025-3-22 14:28:53 | 只看該作者
7#
發(fā)表于 2025-3-22 20:42:46 | 只看該作者
8#
發(fā)表于 2025-3-23 01:14:23 | 只看該作者
9#
發(fā)表于 2025-3-23 03:16:50 | 只看該作者
10#
發(fā)表于 2025-3-23 05:56:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巨鹿县| 平南县| 宁强县| 昌宁县| 南部县| 集贤县| 商丘市| 长白| 临武县| 凤冈县| 仪征市| 栖霞市| 大邑县| 高雄市| 五原县| 喀喇沁旗| 杭锦旗| 泰兴市| 张家口市| 富阳市| 凉城县| 云南省| 铜梁县| 景谷| 普格县| 习水县| 肇东市| 尖扎县| 华容县| 响水县| 鱼台县| 手机| 新野县| 贵德县| 容城县| 辽源市| 新晃| 印江| 宁武县| 呼和浩特市| 武邑县|