找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Analysis of Shock Wave Reflection; Shuxing Chen Book 2020 Shanghai Scientific and Technical Publishers 2020 Nonlinear Hyperbo

[復(fù)制鏈接]
樓主: Coarse
11#
發(fā)表于 2025-3-23 10:13:10 | 只看該作者
Perturbation of Regular Shock Reflection,ot a planar shock, and the surface of the obstacle is not a plane. Then the method of shock polar can only give an approximate solution near the reflective point. In order to obtain the precise solution, people must use mathematical analysis based on the theory of partial differential equations, i.e
12#
發(fā)表于 2025-3-23 14:50:25 | 只看該作者
13#
發(fā)表于 2025-3-23 18:23:35 | 只看該作者
14#
發(fā)表于 2025-3-24 01:28:01 | 只看該作者
15#
發(fā)表于 2025-3-24 03:56:33 | 只看該作者
16#
發(fā)表于 2025-3-24 08:46:28 | 只看該作者
Stability of Mach Configuration, Besides, we will also give a classification on this structure according to the characteristic feature of the flow field, and particularly study the stability of Mach configuration. The main references are [., .].
17#
發(fā)表于 2025-3-24 11:36:55 | 只看該作者
18#
發(fā)表于 2025-3-24 16:51:27 | 只看該作者
2364-009X y of partial differential equations.Analyzes Mach reflectionThis book is aimed to make careful analysis to various mathematical problems derived from shock reflection by using the theory of partial differential equations. The occurrence, propagation and reflection of shock waves are important phenom
19#
發(fā)表于 2025-3-24 22:14:39 | 只看該作者
Shock Polar Analysis,is can also be applied to the problems on reflection of non-planar shock. When people apply the theory of partial differential equations to treat more complicated problems in gas dynamics, the careful discussion on shock polar also offers some necessary preparations.
20#
發(fā)表于 2025-3-25 00:39:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 20:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广元市| 金川县| 建平县| 婺源县| 饶阳县| 蒲江县| 崇仁县| 尼玛县| 抚州市| 邻水| 和政县| 永顺县| 嘉黎县| 土默特右旗| 贡觉县| 新津县| 开封市| 枣阳市| 钟山县| 定安县| 临武县| 修水县| 敖汉旗| 若尔盖县| 汝州市| 望奎县| 密云县| 崇礼县| 淅川县| 梨树县| 都安| 德庆县| 西青区| 乐陵市| 精河县| 景德镇市| 兴仁县| 恭城| 阳原县| 聊城市| 县级市|