找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Analysis of Continuum Mechanics and Industrial Applications; Proceedings of the I Hiromichi Itou,Masato Kimura,Akira Takada Co

[復(fù)制鏈接]
樓主: OBESE
41#
發(fā)表于 2025-3-28 18:23:50 | 只看該作者
42#
發(fā)表于 2025-3-28 22:42:32 | 只看該作者
43#
發(fā)表于 2025-3-29 02:03:32 | 只看該作者
2198-350X aders clues to enhance competitiveness and innovation in indThis book focuses on mathematical theory and numerical simulation related to various aspects of continuum mechanics, such as fracture mechanics, elasticity, plasticity, pattern dynamics, inverse problems, optimal shape design, material desi
44#
發(fā)表于 2025-3-29 03:27:43 | 只看該作者
45#
發(fā)表于 2025-3-29 09:00:17 | 只看該作者
Two-Parameter Topological Expansion of Helmholtz Problems with Inhomogeneityknown inhomogeneity put in a test domain, variation of a complex refractive index leads to the zero-order necessary optimality condition of minimum of the objective function. This condition is realized as an imaging function for finding center of the inhomogeneity.
46#
發(fā)表于 2025-3-29 13:22:39 | 只看該作者
Conference proceedings 2017icity, plasticity, pattern dynamics, inverse problems, optimal shape design, material design, and disaster estimation related to earthquakes. Because these problems have become more important in engineering and industry, further development of mathematical study of them is required for future applic
47#
發(fā)表于 2025-3-29 18:45:39 | 只看該作者
Synthesis of Seismic Wave Envelopes Based on the Markov Approximation introduced to seismology in the late 1980s. Here, on the basis of the Markov approximation, we summarize the development of envelope modeling and describe a method to calculate envelopes on a layered random heterogeneous media.
48#
發(fā)表于 2025-3-29 21:54:43 | 只看該作者
2198-350X ematical theory can be applied not only to different types of industry, but also to a broad range of industrial problems including materials, processes, and products.978-981-10-9672-3978-981-10-2633-1Series ISSN 2198-350X Series E-ISSN 2198-3518
49#
發(fā)表于 2025-3-30 02:07:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
襄樊市| 厦门市| 奇台县| 固始县| 营口市| 新晃| 垦利县| 永清县| 承德市| 黑河市| 开封市| 吴堡县| 班戈县| 肇州县| 巧家县| 罗田县| 革吉县| 永修县| 萨嘎县| 铜山县| 商城县| 苏尼特左旗| 盖州市| 金塔县| 六盘水市| 丰都县| 樟树市| 马山县| 都江堰市| 晋城| 淄博市| 永安市| 蒲江县| 元谋县| 健康| 麻江县| 永善县| 浦县| 北碚区| 东丽区| 红原县|