找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Analysis of Continuum Mechanics and Industrial Applications; Proceedings of the I Hiromichi Itou,Masato Kimura,Akira Takada Co

[復(fù)制鏈接]
樓主: OBESE
41#
發(fā)表于 2025-3-28 18:23:50 | 只看該作者
42#
發(fā)表于 2025-3-28 22:42:32 | 只看該作者
43#
發(fā)表于 2025-3-29 02:03:32 | 只看該作者
2198-350X aders clues to enhance competitiveness and innovation in indThis book focuses on mathematical theory and numerical simulation related to various aspects of continuum mechanics, such as fracture mechanics, elasticity, plasticity, pattern dynamics, inverse problems, optimal shape design, material desi
44#
發(fā)表于 2025-3-29 03:27:43 | 只看該作者
45#
發(fā)表于 2025-3-29 09:00:17 | 只看該作者
Two-Parameter Topological Expansion of Helmholtz Problems with Inhomogeneityknown inhomogeneity put in a test domain, variation of a complex refractive index leads to the zero-order necessary optimality condition of minimum of the objective function. This condition is realized as an imaging function for finding center of the inhomogeneity.
46#
發(fā)表于 2025-3-29 13:22:39 | 只看該作者
Conference proceedings 2017icity, plasticity, pattern dynamics, inverse problems, optimal shape design, material design, and disaster estimation related to earthquakes. Because these problems have become more important in engineering and industry, further development of mathematical study of them is required for future applic
47#
發(fā)表于 2025-3-29 18:45:39 | 只看該作者
Synthesis of Seismic Wave Envelopes Based on the Markov Approximation introduced to seismology in the late 1980s. Here, on the basis of the Markov approximation, we summarize the development of envelope modeling and describe a method to calculate envelopes on a layered random heterogeneous media.
48#
發(fā)表于 2025-3-29 21:54:43 | 只看該作者
2198-350X ematical theory can be applied not only to different types of industry, but also to a broad range of industrial problems including materials, processes, and products.978-981-10-9672-3978-981-10-2633-1Series ISSN 2198-350X Series E-ISSN 2198-3518
49#
發(fā)表于 2025-3-30 02:07:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 22:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仙桃市| 昌江| 彰化县| 南涧| 天水市| 江安县| 彝良县| 枝江市| 大英县| 原平市| 乌拉特前旗| 宜州市| 大同县| 灵武市| 集安市| 仁化县| 崇文区| 弥勒县| 锡林浩特市| 六盘水市| 秭归县| 西昌市| 武清区| 红安县| 横峰县| 临江市| 太谷县| 辉南县| 武邑县| 南皮县| 望江县| 麻阳| 铅山县| 唐海县| 肇源县| 浦北县| 息烽县| 鹤岗市| 南昌县| 微博| 伊川县|